Options
Tsoi, Wing
- PublicationEffects of inundation on water quality and invertebrates in semiarid floodplain wetlands(Taylor & Francis, 2022)
; ; ; ; ; ; Floodplain wetlands play a significant role in the storage of sediment and water and support high levels of nutrient cycling driven by intermittent inundation. In regulated rivers, the frequency and duration of floodplain inundation are often reduced. Managed water inundation is used as a tool to help restore floodplains, but its outcome on wetlands requires further quantification. We examined the effects of environmental floodplain watering on water quality and 3 groups of invertebrates, including benthic and pelagic micro invertebrates and macroinvertebrates, in 2 wetlands systems on the Gwydir River system in the north of the Murray-Darling Basin. We hypothesised that a wetland inundated for longer periods would alter water quality and support a greater richness and abundance of invertebrates, thus altering their assemblage structures. Water quality and the assemblage structure of all 3 invertebrate groups in the wetlands were significantly influenced by the time since connection (TSC) to their rivers and therefore the length of inundation. However, the response of water quality and the micro invertebrate assemblages to TSC differed between the 2 wetlands. Water quality was affected by an increase in 6 variables, including total nitrogen, and a decrease in soluble reactive phosphorus. Micro invertebrate abundance was positively associated with TSC, but the abundance of macroinvertebrates was not. The relationships demonstrated between TSC and invertebrates indicate that the duration of inundation is important for ecological structure and food webs in these and other semiarid floodplain wetlands.
- PublicationLong-term intervention monitoring in the Gwydir River Selected Area: The influence of hydrology on channel aquatic invertebrates.(University of New England, 2022)
; ; ; ; The Basin-wide Environmental Watering Strategy forms a part of a program of water reform in the Murray-Darling Basin to deliver water to instream channels and wetlands through environmental flows. A key objective of the Strategy is 'Improved Ecological Processes' based on more productive and diverse food webs and ecological communities supported by the increased movement of carbon and nutrients. In turn, achieving these productivity and water quality objectives supports the Basin Plan Objectives of improving the life cycle completion of key plants and animals, and meeting the needs of the whole fish and waterbird community. Therefore, key Basin Environmental Watering Strategy targets of successful fish and waterbird recruitment can only be achieved if environmental water delivers sufficient energy that is both available to, and accessible by aquatic biota.
In this report we assess the responses of three groups of aquatic invertebrates, including epi-benthic and zooplankton microinvertebrates and macroinvertebrates to the environmental water releases and natural flows that occurred in the channels in Gwydir River Selected Area during the Long term Intervention Monitoring (LTIM) program. We found that the responses in either richness or abundances of individual taxa due to various associations with channel hydrology significantly affected in assemblage structure of all three invertebrate groups. The response of invertebrates to channel hydrology was mainly demonstrated for epibenthic and zooplankton microinvertebrates and not macroinvertebrates but those associations were not strong. Due to the presence of invertebrates at all sites and times when water was available environmental water can play a significant role in contributing to the basal food resources in the Gwydir Selected Area.
- PublicationPatterns of invertebrate emergence and succession in flooded wetland mesocosmsFloodplain wetlands are some of the most productive ecosystems available to aquatic and terrestrial organisms. However, regulation of lowland rivers can disrupt ecological processes occurring in the river–floodplain ecosystems, and environmental water can be delivered to affected wetlands to maintain productivity. It is not well understood at what stage following inundation there would be sufficient invertebrate biomass and large-sized individuals to support production and reproduction of secondary consumers. In this study we follow changes in the abundances of invertebrates after wetting in three mesocosm trials using soil from two wetlands from the north of the Murray–Darling Basin over 6-week periods. Peak abundances generally occurred in either the fifth or sixth weeks, but abundances were high after 2–3 weeks. Our results suggest that inundation of wetlands using environmental watering can achieve high productivity within a short time frame, within weeks. However, how quickly the high productivity is passed on to second-order consumers remains unclear and should be an area of future research.
- PublicationThe effects of hydrology on macroinvertebrate traits in river channel and wetland habitats(Michigan State University Press, 2021-10-01)
; ; ; ; ; Increased need for freshwater for human uses from the mid-1900s has severely impacted rivers and floodplain wetlands so that they are some of the most seriously degraded environments in the world. Research and monitoring in this area to date has focused on understanding 'flow-ecology' relationships, without investigating the mechanisms underlying them. The use of species traits offers a tool for defining mechanistic connections between biotic responses and environmental conditions. We examined nine macroinvertebrate trait categories in both wetlands and channels to determine whether their profiles responded to hydrology in the Gwydir River system in the northern Murray-Darling Basin, Australia. Trait responses were shown for the wetlands but not the river channels. Twelve traits showed positive relationships with the time the wetlands were connected to their river channels. It is unclear the reason(s) why the river channel invertebrate traits did not respond to hydrology. However, the use of environmental flows in the river systems may be important to other aspects of macroinvertebrate assemblages such as their role in food webs to support higher-order consumers.