Now showing 1 - 10 of 30
Loading...
Thumbnail Image
Publication

Previous land use and climate influence differences in soil organic carbon following reforestation of agricultural land with mixed-species plantings

2016, England, Jacqueline R, Paul, Keryn I, Herrmann, Tim, Polglase, Philip J, Cunningham, Shaun C, Madhavan, Dinesh B, Baker, Thomas G, Read, Zoe, Wilson, Brian, Cavagnaro, Timothy R, Lewis, Tom, Perring, Michael P

Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0-30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha⁻¹y⁻¹. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha⁻¹y⁻¹, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R² = 0.18- 0.51) and previously-cropped (R² = 0.14-0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously- cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broadscale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.

Loading...
Thumbnail Image
Publication

Drivers of soil organic carbon storage and vertical distribution in Eastern Australia

2015, Hobley, Nellie, Wilson, Brian, Wilkie, Arjan, Gray, Jonathan, Koen, Terry

Aims: Drivers of soil organic carbon (SOC) storage are likely to vary in importance in different regions and at different depths due to local factors influencing SOC dynamics. This paper explores the factors influencing SOC to a depth of 30 cm in eastern Australia. Methods: We used a machine learning approach to identify the key drivers of SOC storage and vertical distribution at 1401 sites from New South Wales, Australia. We then assessed the influence of the identified factors using traditional statistical approaches. Results: Precipitation was important to and positively associated with SOC content, whereas temperature was important to and negatively associated with SOC vertical distribution. The importance of geology to SOC content increased with increasing soil depth. Land-use was important to both SOC content and its vertical distribution. Conclusion: We attribute these results to the influence of precipitation on primary production controlling SOC content, and the stronger influence of temperature on microbial activity affecting SOC degradation and vertical distribution. Geology affects SOC retention below the surface. Land-use controls SOC via production, removal and vertical mixing. The factors driving SOC storage are not identical to those driving SOC vertical distribution. Changes to these drivers will have differential effects on SOC storage and depth distribution.

Loading...
Thumbnail Image
Publication

The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia

2014, Fazle Rabbi, Sheikh M, Tighe, Matthew, Cowie, Annette, Wilson, Brian, Schwenke, Graeme, McLeod, Malem, Badgery, Warwick, Baldock, Jeffery

This project aimed to identify land uses and soil management practices that have significant associations with soil organic carbon (SOC) stocks (0-0.3 m) in New South Wales (NSW), Australia. The work presented in this paper is based on a one-off survey targeting key land uses and management practices of eastern NSW. Because of the nature of the work, the land uses and management combinations surveyed in different soils and climatic conditions were significantly unbalanced, and separately analyzing associations after breaking the dataset into different land uses may lead to significant increases in Type errors. Therefore, redundancy analysis (RDA) was undertaken to explore the association between explanatory variables (i.e., land uses, soil management, soil properties and environmental variables) and the variation in stocks (mass per unit area) of particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC) across 780 sites in eastern NSW, south eastern Australia. Results indicated that soil properties, land uses, soil management and environmental variables together could explain 52% of total variation in stocks of the SOC fractions. Specifically soil properties and environmental variables explained 42.8%, whereas land uses and management practices together explained 9.2% of the total variation in SOC fractions. A forward selection RDA was also undertaken considering soil properties and environmental variables as covariates to assess the statistical significance of land uses and management practices on stocks of POC, HOC and ROC. We found that pasture had significant positive associations on stocks of carbon fractions. Among the soil properties and environmental variables rainfall, longitude and elevation had a significant positive influence while pH and bulk density had a significantly negative influence on the HOC, POC and ROC stocks. Using a novel multivariate technique, the current work identified the land uses and soil management that had significant impact on carbon stocks in soil after accounting for influences soil properties and environmental variables.

Loading...
Thumbnail Image
Publication

Land-use and historical management effects on soil organic carbon in grazing systems on the Northern Tablelands of New South Wales

2013, Wilson, Brian, Lonergan, Vanessa

We examined soil organic carbon (SOC) concentration (mg g⁻¹) and total organic carbon (TOC) stock (Mg ha-1 to 30 cm soil depth) in three pasture systems in northern New South Wales: improved pasture, native pasture, and lightly wooded pasture, at two sampling times (2009 and 2011). No significant difference was found in SOC or TOC between sample times, suggesting that under the conditions we examined, neither 2 years nor an intervening significant rainfall event was sufficient to change the quantity or our capacity to detect SOC, and neither represented a barrier to soil carbon accounting. Low fertility, lightly wooded pastures had a slightly but significantly lower SOC concentration, particularly in the surface soil layers. However, no significant differences in TOC were detected between the three pasture systems studied, and from a carbon estimation perspective, they represent one, single dataset. A wide range in TOC values existed within the dataset that could not be explained by environmental factors. The TOC was weakly but significantly correlated with soil nitrogen and phosphorus, but a more significant pattern seemed to be the association of high TOC with proportionally larger subsoil (0.1-0.3 m) organic carbon storage. This we attribute to historical, long-term rather than contemporary management. Of the SOC fractions, particulate organic carbon (POC) dominated in the surface layers but diminished with depth, whereas the proportion of humic carbon (HUM) and resistant organic carbon (ROC) increased with soil depth. The POC did not differ between the pasture systems but native pasture had larger quantities of HUM and ROC, particularly in the surface soil layers, suggesting that this pasture system tends to accumulate organic carbon in more resistant forms, presumably because of litter input quality and historical management.

Loading...
Thumbnail Image
Publication

Forest burning affects quality and quantity of soil organic matter

2017, Hobley, Eleanor U, Le Gay Brereton, Adrian J, Wilson, Brian

Fire alters ecosystem carbon cycling and generates pyrogenic matter such as charcoal,which can be incorporated into soils. The incorporation and cycling of charcoal in soils is a potential carbon sink, but studies investigating charcoal and carbon dynamics in soils are still lacking. We investigated soil carbon, charcoal and nitrogen dynamics in the top 20 cm of a sandy soil within a eucalypt forest in eastern Australia at three sites representing a chronosequence from 3 months to 14 years post-fire. In the short-term, fire removed litter, but resulted in an increase in both the charcoal and non-charcoal SOC content of the soils, which we attribute to above-ground charcoal generation and its incorporation into the soil profile, as well as below-ground root mortality. On a decadal timeframe, charcoal was preferentially retained in the sandy soil, in which other stabilisation mechanisms are limited, so that the influx of dead root carbon had no remnant effects. The incorporation and retention of charcoal in the soil profile is highly important to carbon cycling in such sandy soils with high fire frequency. It is highly likely that these effects are not limited to the upper 20 cm of soil and future studies should investigate deep soil charcoal cycling.

Loading...
Thumbnail Image
Publication

Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India

2012, Ghosh, Subhadip, Wilson, Brian, Ghoshal, Subrata, Senapati, Nimai, Mandal, Biswapati

Soil organic carbon is considered to be of central importance in maintaining soil quality. We assessed the effects of a range of commonly applied organic and inorganic amendments on soil quality in a rice-wheat cropping system in the Indo-Gangetic plains of eastern India and evaluated the carbon sequestration potential of such management approaches using a 25 year old long-term fertility experiment. Results showed that there were significant increases in soil nutrient availability with the application of farm yard manure (FYM @ 7.5 t ha⁻¹), paddy straw (PS @ 10 t ha⁻¹) and green manure (GM @ 8 t ha⁻¹) along with inorganic fertilizer. Both microbial biomass C and mineralizable C increased following the addition of the organic inputs. Continuous cultivation, without application of organic inputs, significantly depleted total C content (by 39-43%) compared with treatments involving the addition of organic amendments. A significant increase in the non-labile C fraction resulted from both organic and inorganic amendments, but only 26, 18 and 6% of the C applied through FYM, PS and GM, respectively was sequestered in soils. A significant increase in yield of kharif rice was observed as a result of the addition of these organic amendments.

Loading...
Thumbnail Image
Publication

Application of char products improves urban soil quality

2012, Ghosh, Subhadip, Yeo, D, Wilson, Brian, Ow, L F

Urban soils are a key component of the urban ecosystem but little research has considered their quality and management. The use of char or partially combusted char products as a soil amendment is becoming popular worldwide because of perceived benefits to fertility and the potential for increasing carbon sequestration. In this study, we assessed the effect of applying coarse and fine char material on the quality of four different types of soil-based root-zone mixes typically used for turfgrass and general landscaping in Singapore: clay loam soil, approved soil mix (ASM, 3 soil:2 compost:1 sand), 50:50 (sand/soil) and 75:25 (sand/soil). Char briquettes made from sawdust were mixed thoroughly at rates of 25, 50 and 75% by volume with the soil mixes. Results showed that addition of char (both coarse and fine) significantly enhanced the carbon content of the mixes, with the largest increase being associated with the 50% and 75% additions. Soil nutrients (total N, extractable P, K, Ca and Mg) and mean weight diameter of aggregates were also significantly increased following the application of char. The clay loam and the 50:50 and 75:25 soil mixes were more responsive to the addition of char than was ASM.

Loading...
Thumbnail Image
Publication

Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity

2016, Fazle Rabbi, S M, Daniel, Heiko, Lockwood, Peter V, Macdonald, C, Pereg, Lily, Tighe, Matthew, Wilson, Brian, Young, Iain

Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Microaggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes.

Loading...
Thumbnail Image
Publication

Characterization of Soil Organic Matter in Aggregates and Size-Density Fractions by Solid State 13C CPMAS NMR Spectroscopy

2014, Fazle Rabbi, Sheikh Mohammad, Linser, Rasmus, Hook, James M, Wilson, Brian, Lockwood, Peter V, Daniel, Heiko, Young, Iain

Understanding the changes in soil organic matter (SOM) composition during aggregate formation is crucial to explain the stabilization of SOM in aggregates. The objectives of this study were to investigate (i) the composition of SOM associated with different aggregates and size-density fractions and (ii) the role of selective preservation in determining the composition of organic matter in aggregate and size-density fractions. Surface soil samples were collected from an Alfisol on the Northern Tablelands of NSW, Australia, with contrasting land uses of native pasture, crop-pasture rotation and woodland. Solid-state 13C cross-polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy was used to determine the SOM composition in macroaggregates (250-2000 μm), microaggregates (53-250 μm), and <53-μm fraction. The chemical composition of light fraction (LF), coarse particulate organic matter (cPOM), fine particulate organic matter (fPOM), and mineral-associated soil organic matter (mSOM) were also determined. The major constituent of SOM of aggregate size fractions was O-alkyl carbon, which represented 44-57% of the total signal acquired, whereas alkyl carbon contributed 16-27%. There was a progressive increase in alkyl carbon content with decrease in aggregate size. Results suggest that SOM associated with the <53-μm fraction was at a more advanced stage of decomposition than that of macroaggregates and microaggregates. The LF and cPOM were dominated by O-alkyl carbon while alkyl carbon content was high in fPOM and mSOM. Interestingly, the relative change in O-alkyl, alkyl, and aromatic carbon between aggregates and SOM fractions revealed that microbial synthesis and decomposition of organic matter along with selective preservation of alkyl and aromatic carbon play significant roles in determining the composition of organic matter in aggregates.

Loading...
Thumbnail Image
Publication

Modelling soil organic carbon storage with RothC in irrigated Vertisols under cotton cropping systems in the sub-tropics

2014, Senapati, Nimai, Hulugalle, Nilantha, Smith, Pete, Wilson, Brian, Yeluripati, Jagadeesh, Daniel, Heiko, Ghosh, Subhadip, Lockwood, Peter V

The performance of the Rothamsted Carbon Model (RothC) in simulating soil carbon (SOC) storage in cotton based cropping systems under different tillage management practices on an irrigated Vertisol in semi-arid, subtropics was evaluated using data from a long-term (1994-2012) cotton cropping systems experiment near Narrabri in north-western New South Wales, Australia. The experimental treatments were continuous cotton/conventional tillage (CC/CT), continuous cotton/minimum tillage (CC/MT), and cotton-wheat (Triticum aestivum L.) rotation/minimum tillage (CW/MT). Soil carbon (C) input was calculated by published functions that relate crop yield to soil C input. Measured values showed a loss in SOC of 34%, 24% and 31% of the initial SOC storages within 19 years (1994-2012) under CC/CT, CC/MT, and CW/MT, respectively. RothC satisfactorily simulated the dynamics of SOC in cotton based cropping systems under minimum tillage (CC/MT and CW/MT), whereas the model performance was poor under intensive conventional tillage (CC/CT). The model RothC overestimated SOC storage in cotton cropping under conventional intensive tillage management system. This over estimation could not be attributed to the overestimation of soil C inputs, or errors in initial quantification of SOC pools for model initialization, or the ratio of incoming decomposable plant materials to resistant plant materials. Among other different factors affecting SOC dynamics and its modelling under intensive tillage in tropics and sub-tropics, we conclude that factors for tillage and soil erosion might be needed when modelling SOC dynamics using RothC under intensive tillage management system in the tropics and the sub-tropics.