Now showing 1 - 2 of 2
  • Publication
    Soil salinity and vegetation cover change detection from multi-temporal remotely sensed imagery in Al Hassa Oasis in Saudi Arabia
    (Taylor & Francis, 2018)
    Allbed, Amal
    ;
    ;
    Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.
  • Publication
    Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques
    (MDPI AG, 2014)
    Allbed, Amal
    ;
    ;
    Soil salinity is one of the most damaging environmental problems worldwide, especially in arid and semi-arid regions. An integrated approach using remote sensing in addition to various statistical methods has shown success for developing soil salinity prediction models. The aim of this study was to develop statistical regression models based on remotely sensed indicators to predict and map spatial variation in soil salinity in the Al Hassa oasis. Different spectral indices were calculated from original bands of IKONOS images. Statistical correlation between field measurements of Electrical Conductivity (EC), spectral indices and IKONOS original bands showed that the Salinity Index (SI) and red band (band 3) had the highest correlation with EC. Combining these two remotely sensed variables into one model yielded the best fit with R² = 0.65. The results revealed that the high performance of this combined model is attributed to: (i) the spatial resolution of the images; (ii) the great potential of the enhanced images, derived from SI, by enhancing and delineating the spatial variation of soil salinity; and (iii) the superiority of band 3 in retrieving soil salinity features and patterns, which was explained by the high reflectance of the smooth and bright surface crust and the low reflectance of the coarse dark puffy crust. Soil salinity maps generated using the selected model showed that strongly saline soils (>16 dS/m) with variable spatial distribution were the dominant class over the study area. The spatial variability of this class over the investigated areas was attributed to a variety factors, including soil factors, management related factors and climate factors. The results demonstrate that modelling and mapping spatial variation in soil salinity based on regression analysis and remote sensing data is a promising approach, as it facilitates timely detection with a low-cost procedure and allows decision makers to decide what necessary action should be taken in the early stages to prevent soil salinity from becoming prevalent, sustaining agricultural lands and natural ecosystems.