Now showing 1 - 6 of 6
  • Publication
    Effects of outdoor ranging on external and internal health parameters for hens from different rearing enrichments
    In Australia, free-range layer pullets are typically reared indoors, but adult layers go outdoors, and this mismatch might reduce adaptation in laying environments. Enrichments during rearing may optimise pullet development and subsequent welfare as adult free-range hens. In the outdoor environment, hens may have greater opportunities for exercise and natural behaviours which might contribute to improved health and welfare. However, the outdoor environment may also result in potential exposure to parasites and pathogens. Individual variation in range use may thus dictate individual health and welfare. This study was conducted to evaluate whether adult hens varied in their external and internal health due to rearing enrichments and following variation in range use. A total of 1386 Hy-Line Brown® chicks were reared indoors across 16 weeks with three enrichment treatments including a control group with standard housing conditions, a novelty group providing novel objects that changed weekly, and a structural group with custom-designed structures to increase spatial navigation and perching. At 16 weeks of age the pullets were moved to a free-range system and housed in nine identical pens within their rearing treatments. All hens were leg-banded with microchips and daily ranging was assessed from 25 to 64 weeks via radio-frequency identification technology. At 64–65 weeks of age, 307 hens were selected based on their range use patterns across 54 days up to 64 weeks: indoor (no ranging), low outdoor (1.4 h or less daily), and high outdoor (5.2–9 h daily). The external and internal health and welfare parameters were evaluated via external assessment of body weight, plumage, toenails, pecking wounds, illness, and post-mortem assessment of internal organs and keel bones including whole-body CT scanning for body composition. The control hens had the lowest feather coverage (p < 0.0001) and a higher number of comb wounds (P = 0.03) than the novelty hens. The high outdoor rangers had fewer comb wounds than the indoor hens (P = 0.04), the shortest toenails (p < 0.0001) and the most feather coverage (p < 0.0001), but lower body weight (p < 0.0001) than the indoor hens. High outdoor ranging decreased both body fat and muscle (both p < 0.0001). The novelty group had lower spleen weights than the control hens (P = 0.01) but neither group differed from the structural hens. The high outdoor hens showed the highest spleen (P = 0.01) and empty gizzard weights (P = 0.04). Both the rearing enrichments and ranging had no effect on keel bone damage (all P ≥ 0.19). There were no significant interactions between rearing treatments and ranging patterns for any of the health and welfare parameters measured in this study (P ≥ 0.07). Overall, rearing enrichments had some effects on hen health and welfare at the later stages of the production cycle but subsequent range use patterns had the greatest impact.
  • Publication
    Preference testing for UV light spectrum and intensity in laying hens
    (Elsevier BV, 2021-06)
    Rana, Md Sohel
    ;
    ; ;

    Sunlight intensity and UV radiation may affect free-range hens' use of the outside range, particularly when sunlight is intense with a high UV index. However, it is uncertain what aspect of sunlight (brightness or UV) may be most aversive to hens to discourage them from leaving standard indoor lighting conditions to venture outdoors. A controlled indoor-based choice study was conducted to determine whether hens showed preferences for different light wavelengths and intensities that may affect outdoor range usage. Cage-reared ISA Brown laying hens (n = 84) at 44 wk of age in 3 groups (28 hens/group) were tested for preferences of indoor standard light emitting diode (LED) white light (control) vs. one of three different treatment lights: 1) visible spectrum plus infrared wavelengths (VIS); 2) visible spectrum plus UVA wavelengths (UVA); and (iii) visible spectrum plus UVA and UVB wavelengths (UVA/B) presented successively at low, medium, or high levels of intensity. Hens within each group were individually tested for 2 h in an apparatus with 2 compartments (control vs. treatment) connected by a tunnel on both sides. Videos of hens' time spent in each compartment and behaviors were decoded and analyzed using GLMM. Hens spent more time under the low intensity of the UVA/B light treatment (62%), the low intensity of VIS light (61%), medium intensities of both UVA/B light (60%), and UVA light (59%), and the high intensity of the VIS light (58%) when compared with control light (all P ≤ 0.05). Hens spent less time feeding under all intensities of UVA light (all P ≤ 0.03) and showed more foraging, ground pecking, and preening at lower levels of UVA/B light (P < 0.05). The study suggests that UVA/B light (sunlight) may have positive effects for hen range use, but during peak sun intensities, hens may need additional measures (e.g., shelter) to protect themselves. Confirmation of these findings in a free-range setting is needed.

  • Publication
    Rearing Enrichments Affected Ranging Behavior in Free-Range Laying Hens
    (Frontiers Research Foundation, 2020-08-14) ;
    Dyall, Tim R
    ;
    Downing, Jeff A
    ;
    ;
    Within Australia, free-range systems are prevalent, but pullets destined for range access are reared indoors. This mismatch between rearing and layer housing may hinder adaptation to the free-range environment. Rearing enrichments could enhance pullet development. A total of 1,386 Hy-Line Brown® chicks were reared inside an experimental facility across 16 weeks with 3 enrichment treatments including (1) a control group with standard floor-housing, (2) a novelty group providing novel objects that changed weekly ("novelty" hens), and (3) a structural group with custom-designed H-shaped structures including opaque sides ("structural" hens). At 16 weeks of age, all pullets were leg-banded with microchips and moved to an experimental free-range system with 9 identical pens (n = 3/rearing treatment). From 25 to 64 weeks, individual hen daily ranging behavior was tracked via radio-frequency identification technology and grouped into 6 age periods per rearing treatment. Video footage was used to count the number of hens at different distances on the range for the first 14 days of access, and eggs were assessed for albumen corticosterone concentrations 4 days prior to (n = 450) and 1 week after first range access (n = 450). Across most age periods, the structural hens spent the most time ranging (P ≤ 0.01), the novelty hens showed the fewest number of visits to the range (P < 0.0001), and both enriched hen groups had the longest maximum visit durations (P ≤ 0.02). Range use increased with age across all treatments with only 3% of hens never going outside. All hens were initially slow to use the range area with fewer novelty hens venturing farther onto the range (P ≤ 0.03). The structural hens had higher albumen corticosterone concentrations and variance (both P ≤ 0.004) prior to range access. All hens showed an increase in albumen corticosterone following the first week of range access resulting in no differences between rearing treatments in means (P = 0.92) and variance (P = 0.63). Different enrichments have differing impacts on ranging behavior, but further research is needed to understand the mechanisms of effects, with differences in brain lateralization a potential hypothesis to be tested.
  • Publication
    Relationship between Range Use and Fearfulness in Free-Range Hens from Different Rearing Enrichments
    Inconsistency between the environments of indoor pullet rearing and adult outdoor housing may increase the fearfulness in free-range hens. Rearing enrichments and/or range use may reduce adult fearfulness. Hy-Line Brown® chicks (n = 1700) were reared inside across 16 weeks with three enrichment treatments: weekly changing novel objects, custom-designed perching/navigation structures, or no additional enrichments. Pullets were transferred to a free-range system at 16 weeks of age, with range access provided from 25 weeks. At 62 weeks, 135 hens were selected from the three rearing treatments and two ranging groups (indoor: no ranging and outdoor: daily ranging) based on individual radio-frequency identification tracking. Individual behavioural tests of tonic immobility, emergence, open field, and novel object (pen level) were carried out on hens. Spectrograms of vocalisations were analysed for the open field test, as well as computer vision tracking of hen locomotion. The results showed few effects of rearing treatments, with outdoor rangers less fearful than indoor hens. The latency to step in the open field test negatively correlated with hen feather coverage. These results show that individual variation in ranging behaviours is present even following rearing enrichment treatments, and subsequent range use might be an indicator of bird fearfulness.
  • Publication
    Early rearing enrichments influenced nest use and egg quality in free-range laying hens
    (Cambridge University Press, 2020) ; ;
    In Australia, free-range egg production pullets are typically reared indoors, but adult layers get outdoor access. This new environment may be challenging to adapt to, which could impair egg production and/or egg quality. Adaptation might be enhanced through rearing enrichments. We reared 1386 Hy-Line Brown® chicks indoors with three treatments across 16 weeks: (1) a control group with standard litter housing conditions, (2) a novelty group providing novel objects that changed weekly, and (3) a structural enrichment group with custom-designed structures to partially impair visibility across the pen and allow for vertical movement. Pullets were transferred to a free-range system at 16 weeks of age with daily outdoor access provided from 25 until 64 weeks. Daily egg production at different laying locations (large nests, small nests and floor), weekly egg weights and egg abnormalities were recorded from 18 to 64 weeks old. External and internal egg quality parameters of egg weight, shell reflectivity, albumen height, haugh unit, yolk colour score, shell weight and shell thickness were measured at 44, 52, 60 and 64 weeks. There was a significant interaction between rearing treatment and nest box use on hen-day production from weeks 18 to 25 (P < 0.0001) with the novelty hens laying the most eggs and the control hens the fewest eggs in the nest box. Similarly, from 26 to 64 weeks, the novelty hens laid more eggs in the large nest boxes and fewer eggs on the floor than both the structural and control hens (P < 0.0001). Egg weight and abnormalities increased with age (P < 0.0001), but rearing treatment had no effect on either measure (both P ≥ 0.19). Rearing treatment affected shell reflectivity and yolk colour with the control hens showing paler colours across time relative to the changes observed in the eggs from enriched hens. The novelty hens may have established nest box laying patterns as they were more accustomed to exploring new environments. The differences in egg quality could be related to stress adaptability or ranging behaviour. This study shows that enriching environments during rearing can have some impacts on production parameters in free-range hens.
  • Publication
    Flock use of the range is associated with the use of different components of a multi-tier aviary system in commercial free-range laying hens
    1. The objective of this study was to investigate the association of using a multi-tier aviary system and access to range on flock uniformity in free-range laying hens, and to determine whether the extent of range use or flock uniformity can be predicted from the use of different levels of the aviary system.
    2. A total of 13,716 Lohmann Brown hens from five commercial free-range flocks housed in identical houses on the same farm were individually weighed at 16 weeks of age and allocated to five replicate areas within each house. Hen movement in the multi-tier aviary system and on the range was individually monitored using radio frequency identification (RFID). All hens had access to the range from 18 to 22 weeks of age and were exposed to the same management conditions.
    3. Whilst only one flock significantly changed its flock uniformity with time, they differed from each other in uniformity and body weight (P = 0.001).
    4. Hens spent most of their available time on the lower aviary tier (7.29 ± 0.029 h/hen/day) and on the upper aviary tier (4.29 ± 0.024 h/hen/day) while the least amount of time was spent on the range and in the nest boxes (0.93 ± 0.005 h/hen/day and 1.48 ± 0.007 h, respectively, P = 0.001).
    5. Range use was negatively correlated (r = −0.30) to the time spent on the upper aviary tier and positively correlated (r = 0.46) to the time spent on the lower aviary tier (P = 0.001). Bivariate analysis revealed that range and upper aviary resp. lower aviary tier usage had a significant curvilinear association.
    6. In conclusion, the study showed that range use was associated to the time hens spent on the different tiers of the aviary system. Flock uniformity varied between flocks but was not associated with either range and aviary system usage.