Options
Laurenson, Yan
Loading...
Given Name
Yan
Yan
Surname
Laurenson
UNE Researcher ID
une-id:ylaurens
Email
ylaurens@une.edu.au
Preferred Given Name
Yan
School/Department
School of Environmental and Rural Science
8 results
Now showing 1 - 8 of 8
- PublicationModelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calvesThe development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST) may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1) the most 'beneficial' indicator for treatment selection and 2) the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest) indicator values versus treating individuals who exceed (or are below) a given indicator threshold. The indicators evaluated were average daily gain (ADG), faecal egg counts (FEC), plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR), the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population). The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.
- PublicationA stochastic model to investigate the effects of control strategies on calves exposed to 'Ostertagia ostertagi'Predicting the effectiveness of parasite control strategies requires accounting for the responses of individual hosts and the epidemiology of parasite supra- and infra-populations. The first objective was to develop a stochastic model that predicted the parasitological interactions within a group of first season grazing calves challenged by 'Ostertagia ostertagi', by considering phenotypic variation amongst the calves and variation in parasite infra-population. Model behaviour was assessed using variations in parasite supra-population and calf stocking rate. The model showed the initial pasture infection level to have little impact on parasitological output traits, such as worm burdens and FEC, or overall performance of calves, whereas increasing stocking rate had a disproportionately large effect on both parasitological and performance traits. Model predictions were compared with published data taken from experiments on common control strategies, such as reducing stocking rates, the 'dose and move' strategy and strategic treatment with anthelmintic at specific times. Model predictions showed in most cases reasonable agreement with observations, supporting model robustness. The stochastic model developed is flexible, with the potential to predict the consequences of other nematode control strategies, such as targeted selective treatments on groups of grazing calves.
- PublicationCan we use genetic and genomic approaches to identify candidate animals for targeted selective treatmentEstimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes
- PublicationIn silico exploration of the mechanisms that underlie parasite-induced anorexia in sheepA model was used to investigate two mechanisms describing reductions in food intake (anorexia) observed during gastrointestinal parasitism in lambs, and to explore relationships between anorexia and food composition. The mechanisms were either a reduction in intrinsic growth rate, leading to a consequent reduction in food intake (mechanism 1; M1), or a direct reduction in food intake (mechanism 2; M2). For both mechanisms, lambs growing from 2 to 6 months of age were modelled, with one of three levels of trickle challenge with 'Teladorsagia circumcincta'. Scenarios were simulated for feeds varying in either protein or energy content, or both. Major differences were found between the predictions resulting from M1 and M2 on low-energy foods that constrained the intake of uninfected lambs through bulk. With M1, food intake was governed by the first operating constraint, whereas with M2 an additivity of constraints was observed. On the other foods, the duration of anorexia increased with increasing energy content of feed for M1, whilst the duration of anorexia decreased with increasing protein content of feed for M2. For foods that did not have an impact upon lambs' gastrointestinal tract capacity, published data were consistent with predictions of M2. Due to an absence of experimental data, no conclusions could be drawn for relationships between anorexia and food composition in the presence of other limiting constraints, such as bulk for low-energy foods. In conclusion, available experimental data and model predictions were consistent with anorexia having an impact directly on food intake, and with impacts of anorexia increasing with decreasing protein content.
- PublicationWhich is the best phenotypic trait for use in a targeted selective treatment strategy for growing lambs in temperate climates?Targeted selective treatment (TST) requires the ability to identify the animals for which anthelmintic treatment will result in the greatest benefit to the entire flock. Various phenotypic traits have previously been suggested as determinant criteria for TST; however, the weight gain benefit and impact on anthelmintic efficacy for each determinant criterion is expected to be dependent upon the level of nematode challenge and the timing of anthelmintic treatment. A mathematical model was used to simulate a population of 10,000 parasitologically naïve Scottish Blackface lambs (with heritable variation in host-parasite interactions) grazing on medium-quality pasture (grazing density = 30 lambs/ha, crude protein = 140 g/kg DM, metabolisable energy = 10 MJ/kg DM) with an initial larval contamination of 1000, 3000 or 5000 Teladorsagia circumcincta L₃/kg DM. Anthelmintic drenches were administered to 0, 50 or 100% of the population on a single occasion. The day of anthelmintic treatment was independently modelled for every day within the 121 day simulation. Where TST scenarios were simulated (50% treated), lambs were either chosen by random selection or according to highest faecal egg count (FEC, eggs/g DM faeces), lowest live weight (LW, kg) or lowest growth rate (kg/day). Average lamb empty body weight (kg) and the resistance (R) allele frequency amongst the parasite population on pasture were recorded at slaughter (day 121) for each scenario. Average weight gain benefit and increase in R allele frequency for each determinant criterion, level of initial larval contamination and day of anthelmintic treatment were calculated by comparison to a non-treated population. Determinant criteria were evaluated according to average weight gain benefit divided by increase in R allele frequency to determine the benefit per R. Whilst positive phenotypic correlations were predicted between worm burden and FEC; using LW as the determinant criterion provided the greatest benefit per R for all levels of initial larval contamination and day of anthelmintic treatment. Hence, LW was identified as the best determinant criterion for use in a TST regime. This study supports the use of TST strategies as benefit per R predictions for all determinant criteria were greater than those predicted for the 100% treatment group, representing an increased longterm productive benefit resulting from the maintenance of anthelmintic efficacy. Whilst not included in this study, the model could be extended to consider other parasite species and host breed parameters, variation in climatic influences on larval availability and grass growth, repeated anthelmintic treatments and variable proportional flock treatments.
- PublicationExploration of the epidemiological consequences of resistance to gastro-intestinal parasitism and grazing management of sheep through a mathematical model(Elsevier BV, 2012)
; ;Kyriazakis, Ilias ;Forbes, Andrew BarnetBishop, Stephen ChristopherPredicting the impacts of selection for decreased faecal egg count (FEC) (i.e. host resistance) in grazing ruminants is difficult, due to complex interactions between parasite epidemiology, management and host responses. A mathematical model including heritable between lamb variation in host-parasite interactions, 'Teladorsagia circumcincta' epidemiology and anthelmintic drenching, was developed and used to (i) address such interactions and their impact on outcomes including FEC, live weight (LW, kg) and pasture larval contamination (PC, larvae/kg DM), and (ii) investigate how grazing management strategies, aimed at reducing host exposure to infective larvae via pasture moves at 40 day intervals, affectthese outcomes. A population of 10,000 lambs was simulated and resultant FEC predictions used to assign the 1,000 lambs with the highest and lowest predicted FEC to 'susceptible' (S) and 'resistant', (R) groups, respectively. The predicted average FEC of the S group was ∼8.5-fold higher than the R group across a grazing season. The R and S groups were then simulated to graze separate pastures (Rsep and Ssep); and repeated for 3 grazing seasons to allow predictions to diverge and stabilize. Further, different grazing strategies were superimposed on all groups. PC and average FEC were affected by whether lambs of different resistance genotype grazed together or separately, with differences increasing across grazing seasons. By the third grazing season the average PC of the Rsep group was reduced by ∼83%, and the Ssep group was increased by ∼240%, in comparison to the whole population average. Average FEC of the Rsep group was reduced by ∼40%, and the Ssep group increased by ∼46% in comparison to the R and S groups, respectively, whilst drenching had little impact on the proportional differences in FEC between groups. Predicted LW was similar for the R and Rsep groups irrespective of anthelmintic treatment, whilst LW of the Ssep group was reduced by ∼14% compared to the S group for un-drenched lambs, and by ∼4% for drenched lambs. The differing grazing strategies were predicted to have little impact on FEC or LW, with the exception of the Ssep group which was predicted to have a 2 kg increase in LW when drenched and moved to a clean pasture. Together, these results suggest that host genotype has a substantial impact on parasite epidemiology, however the benefits of anthelmintic treatment and grazing management should only be expected for susceptible animals. This supports the use of targeted selective treatment, focussing on susceptible animals. - PublicationModelling the short- and long-term impacts of drenching frequency and targeted selective treatment on the performance of grazing lambs and the emergence of anthelmintic resistance(Cambridge University Press, 2013)
; ;Bishop, Stephen C ;Forbes, Andrew BKyriazakis, IliasRefugia-based treatment strategies aim to prolong anthelmintic efficacy by maintaining a parasite population unexposed to anthelmintics. Targeted selective treatment (TST) achieves this by treating only animals that will benefit most from treatment, using a determinant criterion (DC). We developed a mathematical model to compare various traits proposed as DC, and investigate impacts of TST and drenching frequency on sheep performance and anthelmintic resistance. Short term, decreasing the proportion of animals drenched reduced benefits of anthelmintic treatment, assessed by empty body weight (EBW), but decreased the rate of anthelmintic resistance development; each consecutive drenching had a reduced impact on average EBW and an increased impact on the rate of anthelmintic resistance emergences. The optimal DC was fecal egg count, maintaining the highest average EBW when reducing the proportion of animals drenched. Long-term, reducing the proportion of animals drenched had little impact on total weight gain benefits, across animals and years, whilst reducing drenching frequency increased it. Decreasing the frequency and proportion of animals drenched were both predicted to increase the duration of anthelmintic efficacy but reduce the total number of drenches administered before resistance was observed. TST and frequency of drenching may lead to different benefits in the short versus long term. - PublicationModelling the impacts of pasture contamination and stocking rate for the development of targeted selective treatment strategies for 'Ostertagia ostertagi' infection in calvesA simulation study was carried out to assess whether variation in pasture contamination or stocking rate impact upon the optimal design of targeted selective treatment (TST) strategies. Two methods of TST implementation were considered: 1) treatment of a fixed percentage of a herd according to a given phenotypic trait, or 2) treatment of individuals that exceeded a threshold value for a given phenotypic trait. Four phenotypic traits, on which to base treatment were considered: 1) average daily bodyweight gain, 2) faecal egg count, 3) plasma pepsinogen, or 4) random selection. Each implementation method (fixed percentage or threshold treatment) and determinant criteria (phenotypic trait) was assessed in terms of benefit per R (BPR), the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population). The impact of pasture contamination on optimal TST strategy design was investigated by setting the initial pasture contamination to 100, 200 or 500 'O. ostertagi' L3/kg DM herbage; stocking rate was investigated at a low (3calves/ha), conventional (5 calves/ha) or high (7 calves/ha) stocking rates. When treating a fixed percentage of the herd, treatments according to plasma pepsinogen or random selection were identified as the most beneficial (i.e. resulted in the greatest BPR) for all levels of initial pasture contamination and all stocking rates. Conversely when treatments were administered according to threshold values ADG was most beneficial, and was identified as the best TST strategy (i.e. resulted in the greatest overall BPR) for all levels of initial pasture contamination and all stocking rates.