Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Publication

Use of proximal sensors to evaluate at the sub-paddock scale a pasture growth-rate model based on light-use efficiency

2014, Rahman, Muhammad Moshiur, Lamb, David, Stanley, John, Trotter, Mark

Monitoring pasture growth rate is an important component of managing grazing livestock production systems. In this study, we demonstrate that a pasture growth rate (PGR) model, initially designed for NOAA AVHRR normalised difference vegetation index (NDVI) and since adapted to MODIS NDVI, can provide PGR at spatial resolution of ~2 m with an accuracy of ~2 kg DM/ha.day when incorporating in-situ sensor data. A PGR model based on light-use efficiency (LUE) was combined with 'in-situ' measurements from proximal weather (temperature), plant (fraction of absorbed photosynthetically active radiation, fAPAR) and soil (relative moisture) sensors to calculate the growth rate of a tall fescue pasture. Based on an initial estimate of LUEmax for the candidate pasture, followed by a process of iterating LUEmax to reduce prediction errors, the model was capable of estimating PGR with a root mean square error of 1.68 kg/ha.day (R² = 0.96, P-value ≈ 0). The iterative process proved to be a convenient means of estimating LUE of this pasture (1.59 g DM/MJ APAR) under local conditions. The application of the LUE-PGR approach to developing an in-situ pasture growth rate monitoring system is discussed.

Loading...
Thumbnail Image
Publication

The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy

2015, Rahman, Muhammad Moshiur, Lamb, David, Stanley, John

The fraction of absorbed photosynthetically active radiation (fAPAR) for plant canopies is often inferred from top-of-canopy, spectral reflectance, vegetation indices like the normalized difference vegetation index (NDVI). Such measures are derived using passive optical sensors and solar illumination of the canopy. However both the passive sensor-derived NDVI and the accompanying fAPAR measurements are affected by the solar elevation angle (θs). In many cases the effect of θs on both NDVI and fAPAR measurements is similar and the effect of θs is often cancelled out. The new class of active optical sensors (AOS) that contain their own radiant light sources to produce equivalent measurements of NDVI are not influenced by θs even though the accompanying values of fAPAR, as derived using a passive sensor are. This means the fAPAR–NDVIAOS relationship will invariably be sensitive to θs. By way of example, this paper investigates the correlations between the NDVIAOS and fAPAR under conditions of varying solar illumination angle for a tall fescue (Festuca arundinacea) pasture. The NDVIAOS was observed to retain a strong linear correlation with fAPAR (R2 ≥ 0.85) but fAPAR was highly sensitive to θs. Subsequently, simple models can be utilized to predict the fAPAR-NDVIAOS relationship for any solar elevation angle between 30 and 80°.

Loading...
Thumbnail Image
Publication

Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia

2017, Robson, Andrew, Rahman, Muhammad Moshiur, Muir, Jasmine

Accurate pre-harvest estimation of avocado (Persea americana cv. Haas) yield offers a range of benefits to industry and growers. Currently there is no commercial yield monitor available for avocado tree crops and the manual count method used for yield forecasting can be highly inaccurate. Remote sensing using satellite imagery offers a potential means to achieve accurate pre-harvest yield forecasting. This study evaluated the accuracies of high resolution WorldView (WV) 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of total fruit weight (kg·tree⁻¹) and average fruit size (g) and for mapping the spatial distribution of these yield parameters across the orchard block. WV 2 satellite imagery was acquired over two avocado orchards during 2014, and WV3 imagery was acquired in 2016 and 2017 over these same two orchards plus an additional three orchards. Sample trees representing high, medium and low vigour zones were selected from normalised difference vegetation index (NDVI) derived from the WV images and sampled for total fruit weight (kg·tree⁻¹) and average fruit size (g) per tree. For each sample tree, spectral reflectance data was extracted from the eight band multispectral WV imagery and 18 vegetation indices (VIs) derived. Principal component analysis (PCA) and non-linear regression analysis was applied to each of the derived VIs to determine the index with the strongest relationship to the measured total fruit weight and average fruit size. For all trees measured over the three year period (2014, 2016, and 2017) a consistent positive relationship was identified between the VI using near infrared band one and the red edge band (RENDVI1) to both total fruit weight (kg·tree⁻¹) (R² = 0.45, 0.28, and 0.29 respectively) and average fruit size (g) (R² = 0.56, 0.37, and 0.29 respectively) across all orchard blocks. Separate analysis of each orchard block produced higher R² values as well as identifying different optimal VIs for each orchard block and year. This suggests orchard location and growing season are influencing the relationship of spectral reflectance to total fruit weight and average fruit size. Classified maps of avocado yield (kg·tree⁻¹) and average fruit size per tree (g) were produced using the relationships developed for each orchard block. Using the relationships derived between the measured yield parameters and the optimal VIs, total fruit yield (kg) was calculated for each of the five sampled blocks for the 2016 and 2017 seasons and compared to actual yield at time of harvest and pre-season grower estimates. Prediction accuracies achieved for each block far exceeded those provided by the grower estimates.

Loading...
Thumbnail Image
Publication

Using Active Optical Sensing for Determining Pasture Growth Rate Using a Light Use Efficiency Model

2015, Rahman, Muhammad Moshiur, Lamb, David, Guppy, Christopher, Stanley, John

The ability to quantify pasture biomass and growth rate is of prime importance to the sustainability and profitability of extensive livestock industries, specifically as it relates to provide information for better farm management decisions. Assessment of pasture growth rate (PGR, kg/ha.day) using remote sensing has gained considerable interest to the farm managers for livestock grazing management. The context of this research is to investigate the use of in situ sensors and a light use efficiency (LUE) model to estimate PGR. A key parameter in this model is the light interception by the canopy, or fAPAR. Measuring fAPAR using active optical sensors (AOS) introduces new challenges hitherto not appreciated using traditional passive optical sensors and so a considerable portion of this work focusses on the derivation of fAPAR from a widely used optical reflectance index, the normalized difference vegetation index (NDVI). Therefore this research project comprises of two main components: (i) investigating an AOS to infer the fraction of absorbed photosynthetically active radiation (fAPAR) by the plant, a key variable in LUE model; and (ii) evaluating the LUE model using in situ sensors for estimating of PGR (kg/ha.day) at the sub field scale.

Loading...
Thumbnail Image
Publication

'Sugar from Space': Using Satellite Imagery to Predict Cane Yield and Variability

2018, Muir, Jasmine, Robson, Andrew, Rahman, M M

Satellite imagery has been demonstrated to be an effective technology for producing accurate pre-harvest estimates in many agricultural crops. For Australian sugarcane, yield forecasting models have been developed from a single date SPOT satellite image acquired around peak crop growth. However, a failure to acquire a SPOT image at this critical growth stage, from continued cloud cover or from competition for the satellite, can prevent an image being captured and therefore a forecast being made for that season. In order to reduce the reliance on a single image capture and to improve the accuracies of the forecasts themselves, time series yield prediction models have been developed for eight sugarcane growing regions using multiple years of free Landsat satellite images. In addition to the forecasting of average regional yield, an automated computational and programming procedure enabling the derivation of crop vigour variability (GNDVI) maps from the freely available Sentinel 2 satellite imagery was developed. These maps, produced for 15 sugarcane growing regions during the 2017 growing season, identify both variations in crop vigour across regions and within every individual crop. These outputs were made available to collaborating mills within each growing region. This paper presents the accuracies achieved from the time series yield forecasting models versus actual 2017 yields for the respective regions, as well as provides an example of the derived mapping outputs.

Loading...
Thumbnail Image
Publication

Multi-temporal landsat algorithms for the yield prediction of sugarcane crops in Australia

2017, Rahman, Muhammad Moshiur, Muir, Jasmine, Robson, Andrew

Accurate with-in season yield prediction is important for the Australian sugarcane industry as it supports crop management and decision making processes, including those associated with harvest scheduling, storage, milling, and forward selling. In a recent study, a quadratic model was developed from multi-temporal Landsat imagery (30 m spatial resolution) acquired between 2001-2014 (15th November to 31st July) for the prediction of sugarcane yield grown in the Bundaberg region of Queensland, Australia. The resultant high accuracy of prediction achieved from the Bundaberg model for the 2015 and 2016 seasons inspired the development of similar models for the Tully and Mackay growing regions. As with the Bundaberg model, historical Landsat imagery was acquired over a 12 year (Tully) and 10 year (Mackay) period with the capture window again specified to be between 1st November to 30th June to coincide with the sugarcane growing season. All Landsat images were downloaded and processed using Python programing to automate image processing and data extraction. This allowed the model to be applied rapidly over large areas. For each region, the average green normalized difference vegetation index (GNDVI) for all sugarcane crops was extracted from each image and overlayed onto one time scale 1st November to 30th June. Using the quadratic model derived from each regional data set, the maximum GNDVI achieved for each season was calculated and regressed against the corresponding annual average regional sugarcane yield producing strong correlation for both Tully (R2 = 0.89 and RMSE = 5.5 t/ha) and Mackay (R2 = 0.63 and RMSE = 5.3 t/ha). Moreover, the establishment of an annual crop growth profile from each quadratic model has enabled a benchmark of historic crop development to be derived. Any deviation of future crops from this benchmark can be used as an indicator of widespread abiotic or biotic constraints. As well as regional forecasts, the yield algorithms can also be applied at the pixel level to allow individual yield maps to be derived and delivered near real time to all Australian growers and millers.

Loading...
Thumbnail Image
Publication

Multi-temporal remote sensing for yield prediction in sugarcane crops

2016, Rahman, Muhammad Moshiur, Robson, Andrew

Sugarcane yield prediction is critical for in season crop management and decision making processes such as harvest scheduling, storage and milling, and forward selling. This presentation reports on a recently published method of predicting sugarcane yield in the Bundaberg region (Qld) using time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31st (2001-2015), were sourced for this study. The images were masked using the field boundary layer vector files of each year and the green normalized difference vegetation index (GNDVI), an indicator of crop vigour was calculated. An analysis of average GNDVI values from all sugarcane crops grown within the Bundaberg region over the 15 year period using a quadratic model identified the beginning of April as the peak growth stage and, therefore, the decisive time of image capture for a single satellite image based yield forecasting. The model derived maximum GNDVI was regressed against historical sugarcane yield data obtained from the mill. The coefficient of determination showed a significant relation between the predicted and actual sugarcane yield (t/ha) with R2 = 0.69 and RMSE 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible technique to predict sugarcane yield in Bundaberg region. This research, however, warrants further investigation to improve and develop accurate operational sugarcane yield prediction model across other domestic and global growing regions, as the influence of environmental conditions and cropping practices will likely vary the relationship between GNDVI and yield (t/ha).

Loading...
Thumbnail Image
Publication

A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region

2016, Rahman, Muhammad Moshiur, Robson, Andrew

Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel model for predicting sugarcane yield in Bundaberg region from time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31st (2001-2015) were sourced for this study. The images were masked using the field boundary layer vector files of each year and the GNDVI was calculated. An analysis of average green normalized difference vegetation index (GNDVI) values from all sugarcane crops grown within the Bundaberg region over the 15 year period identified the beginning of April as the peak growth stage and, therefore, the optimum time for satellite image based yield forecasting. As the GNDVI is an indicator of crop vigor, the model derived maximum GNDVI was regressed against historical sugarcane yield data, which showed a significant correlation with R² = 0.69 and RMSE = 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible and a modest technique to predict sugarcane yield in Bundaberg region.

Loading...
Thumbnail Image
Publication

NDVI 'Depression' In Pastures Following Grazing

2014, Rahman, Muhammad Moshiur, Lamb, David, Stanley, John, Trotter, Mark

Pasture biomass estimation from normalized difference vegetation index (NDVI) using ground, air or space borne sensors is becoming more widely used in precision agriculture. Proximal active optical sensors (AOS) have the potential to eliminate the confounding effects of path radiance and target illumination conditions typically encountered using passive sensors. Any algorithm that infers the green fraction of pasture from NDVI must factor in plant morphology and live/dead plant ratio, irrespective of the senor used. Moreover, livestock grazing affects the morphology of pastures so the veracity of instrument calibration procedures applied under 'protected plot' conditions is questionable if the sensor is subsequently deploy as a 'calibrated sensor' into grazed fields. In this research we have simulated pasture grazing on establish plots of Tall fescue ('Festuca arundinacea') in a heavy clay (vertosol) soil and examined the effect of such grazing on the temporal NDVI values as derived using a Crop CircleTM sensor. Five plots with different soil moisture condition were maintained in the study period. Time domain reflectometer (TDR) was used to monitor volumetric soil moisture content (%) and NDVI measurements were taken on a daily basis. Following a grazing event (facilitated by uniformly mowing the grass to a height of 6 cm), biomass samples were collected on 3rd, 4th and 5th day along with coincident measures of the NDVI. For those plots with low soil moisture level (< ~37% of the full profile), the NDVI progressively decreased up to 2 or 3 days following the 'grazing' event, despite the plot biomass increasing due to regrowth. The NDVI values did not 'recover' until approximately 4 days after the 'grazing' event. However, for those plots of moderate to high soil moisture (>~37%) the NDVI-time curves monotonically increased with biomass re-growth immediately following 'grazing'. This has important ramifications for those intending to use NDVI as the basis for pasture assessment, particularly in situations involving short-term grazing rotation.

Loading...
Thumbnail Image
Publication

Evaluating remote sensing technologies for improved yield forecasting and for the measurement of foliar nitrogen concentration in sugarcane

2016, Robson, Andrew, Rahman, Muhammad Moshiur, Falzon, Gregory, Verma, Niva, Johansen, Kasper, Robinson, Nicole, Lakshmanan, Prakash, Salter, Barry, Skocaj, Danielle

AN ANALYSIS OF time series Landsat imagery acquired over the Bundaberg region between 2010 and 2015 identified variations in annual crop vigour trends, as determined by greenness normalised difference vegetation index (GNDVI). On average, early to mid-April was identified as the crucial period where crops achieved their maximum vigour and as such indicated when single image captures should be acquired for future regional yield forecasting. Additionally, the regional crop GNDVI averaged from Landsat images between February to April, produced a higher coefficient of determination to final yield (R2 = 0.91) than the average crop GNDVI value from a single mid-season SPOT5 image capture (R2 = 0.52). This result indicates that the time series method may be more appropriate for future regional yield forecasting. For improved prediction accuracies at the individual crop level, a univariate model using only crop GNDVI values (SPOT5) and corresponding yield (t/ha) produced a higher prediction accuracy for the 2014 Bundaberg harvest than a multivariate model that included additional historic spectral and crop attribute data. For Condong, a multivariate model improved the prediction accuracy of individual crops harvested in 2014 by 41.8% for one-year-old cane (Y1), and 46.2% for two-year-old cane (Y2). For the non-invasive measure of foliar nitrogen (N%), the specific wavelengths 615 nm, 737 nm and 933 nm (Airborne hyperspectral), and 634 nm, 750 nm and 880 nm (ground based field spectroscopy) were found to be the most significant. These results were supported by satellite imagery (Worldview-2 and Worldview-3) acquired over three replicated field trials in Mackay (2014 and 2015) and Tully (2015), where the vegetation index (VI) REN2NDVIWV, a ratio of the rededge band (705-745 nm) and the Near-IR2 band (860-1040 nm), produced a higher correlation to nitrogen concentration (%) than NDVI.