Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Publication

The influence of heat load on Merino sheep. 2. Body temperature, wool surface temperature and respiratory dynamics

2020, Lees, A M, Sullivan, M L, Olm, J C W, Cawdell-Smith, A J, Gaughan, J B

Context. Australia exports ~2 million sheep annually. On these voyages, sheep can be exposed to rapidly changing ambient conditions within a short time, and sheep may be exposed to periods of excessive heat load.
Aims. The aim of this study was to define the responses of sheep exposed to incremental heat load under simulated live export conditions. The study herein describes the influence of heat load on wool surface temperature, body temperature (rumen temperature (TRUM), °C; and rectal temperature (TREC), °C) and respiratory dynamics (respiration rate, breaths/min; and panting score (PS)) of sheep under live export conditions. In addition, the relationship between body temperature and respiratory dynamics was investigated.

Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were used in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral (TN; ambient temperature was maintained between 18°C and 20°C), and (2) hot (HOT; ambient temperature minimum and maximum were 22.5°C and 38.5°C respectively). Sheep in the HOT treatment were exposed to heat load simulated from live export voyages from Australia to the Middle East. Respiration rate, PS and wool surface temperature (°C) data were collected four times daily, at 3-h intervals between 0800 hours and 1700 hours. Rectal temperatures were collected on five occasions at 7-day intervals. These data were evaluated using a repeated measures model, assuming a compound symmetry covariance structure. Individual TRUM were obtained via rumen boluses at 10-min intervals between Days 23 and 29 of Cohort 2. Individual TRUM data were collated and converted to an hourly mean TRUM for each sheep, these data were then used to determine the hourly mean TRUM for TN and HOT, then analysed using a first order autoregressive repeated measures model. Additionally, the relationship between respiratory dynamics and TRUM were investigated using a Pearson’s correlation coefficient, a partial correlation coefficient and a multivariate analysis of variance.

Key results. The respiration rate of the HOT sheep (140 ± 3.55 breaths/min) was greater (P < 0.01) than that of the TN sheep (75 ± 3.55 breaths/min). Similarly, the PS of the HOT (1.5 ± 0.02) sheep was greater (P = 0.009) compared with the TN sheep (1.2 ± 0.02). Wool surface temperatures and TREC were greater (P < 0.05) for the HOT sheep than for the TN sheep. There were treatment (P < 0.0001), hour (P < 0.0001), day (P = 0.038) and treatment · hour (P < 0.0001) effects on the TRUM of TN and HOT sheep.

Conclusions. The climatic conditions imposed within the HOT treatment were sufficient to disrupt the thermal equilibrium of these sheep, resulting in increased respiration rate, PS, TREC and TRUM.

Implications. These results suggest that the sheep were unable to completely compensate for the imposed heat load via respiration, thus resulting in an increase in TREC and TRUM.

Loading...
Thumbnail Image
Publication

The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle

2020-01, Lees, Angela M, Salvin, Hannah E, Colditz, Ian G, Lee, Caroline

Previous studies have indicated that cattle with more excitable temperaments exhibit an increased stress response. The objective of this study was to investigate the relationship between temperament traits, handling, and stress-induced hyperthermia (SIH) in beef cattle. Rectal temperatures (TREC, °C) of 60 purebred Angus cattle (30 heifers, 30 steers; 235.2 ± 5.11 kg) were recorded at 20 s intervals from 30 min prior to handling until two hours post handling. All cattle were exposed to a standardized handling procedure consisting of (i) being restrained in a weighing box for 30 s; (ii) being held within the crush for 30 s; and then (iii) being restrained in a head bail for 60 s. Cattle temperaments were evaluated via three traits: (1) agitometer score (AG); (2) crush score (CS); and (3) flight speed (FS) during the handling procedure. Agitometer scores and FS measures were used to describe an AG category (AGCAT) and an FS category (FSCAT) that were used to classify animals into three temperament categories: 1, calm; 2, intermediate; and 3, temperamental. Pearson’s correlation coefficients were used to evaluate the associations between (i) AG, CS, FS, and TREC 30 min prior to entry into the weighing box (T-30) and then at 1 min intervals between time of entry into the weighing box (T0) until 10 min post-weighing (T10); and (ii) the relationship between AG, CS, and FS. The relationship between TREC and temperament traits over the 2.5 h were modeled by using a first-order autoregressive repeated measures model. Flight speed had strong to moderate associations with TREC at T-30 (r ≥ 0.37; p ≤ 0.006) and between T0 and T10 (r ≥ 0.36; p ≤ 0.01). There were moderate associations amongst TREC between T0 and T10 and CS (r ≥ 0.31; p ≤ 0.01). A weak relationship existed with CS (r = 0.16; p = 0.16). There were no associations between AG and TREC at T-30 (r ≥ −0.15; p = 0.84) or between T0 and T10 (r ≤ 0.04; p ≥ 0.4). Rectal temperature, irrespective of sex and temperament traits, was influenced by time (p < 0.0001), and maximum TREC (39.3 ± 0.04 °C) occurred between 4 and 5.7 min after entry into the weighing box. In addition, CS (p = 0.007) influenced TREC in these cattle. There were also time × temperament trait × sex interactions with the CS (p = 0.0003) and FSCAT (p = 0.043) categories; however, time × temperament trait interactions were not statistically significant. Results from this study suggest that cattle with excitable temperaments, as evaluated by FS and CS, have a greater increase in TREC. In addition, these results suggest that a relationship exists between basal TREC and FS and CS. Together, these results highlight that temperament, as assessed by FS and CS, influences both basal TREC and the peak temperature recorded following handling but does not influence the magnitude of change in TREC post handling.