Options
Rabbi, Sheikh Mohammad F
Loading...
Given Name
Sheikh Mohammad F
Sheikh Mohammad
Surname
Rabbi
UNE Researcher ID
une-id:sfazler2
Email
sfazler2@une.edu.au
Preferred Given Name
Rabbi
School/Department
School of Environmental and Rural Science
7 results
Now showing 1 - 7 of 7
- PublicationPhysical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity(Nature Publishing Group, 2016)
; ; ; ;Macdonald, C; ; ; Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Microaggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes. - PublicationCharacterization of Soil Organic Matter in Aggregates and Size-Density Fractions by Solid State 13C CPMAS NMR Spectroscopy(Taylor & Francis Inc, 2014)
; ;Linser, Rasmus ;Hook, James M; ; ; Understanding the changes in soil organic matter (SOM) composition during aggregate formation is crucial to explain the stabilization of SOM in aggregates. The objectives of this study were to investigate (i) the composition of SOM associated with different aggregates and size-density fractions and (ii) the role of selective preservation in determining the composition of organic matter in aggregate and size-density fractions. Surface soil samples were collected from an Alfisol on the Northern Tablelands of NSW, Australia, with contrasting land uses of native pasture, crop-pasture rotation and woodland. Solid-state 13C cross-polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy was used to determine the SOM composition in macroaggregates (250-2000 μm), microaggregates (53-250 μm), and <53-μm fraction. The chemical composition of light fraction (LF), coarse particulate organic matter (cPOM), fine particulate organic matter (fPOM), and mineral-associated soil organic matter (mSOM) were also determined. The major constituent of SOM of aggregate size fractions was O-alkyl carbon, which represented 44-57% of the total signal acquired, whereas alkyl carbon contributed 16-27%. There was a progressive increase in alkyl carbon content with decrease in aggregate size. Results suggest that SOM associated with the <53-μm fraction was at a more advanced stage of decomposition than that of macroaggregates and microaggregates. The LF and cPOM were dominated by O-alkyl carbon while alkyl carbon content was high in fPOM and mSOM. Interestingly, the relative change in O-alkyl, alkyl, and aromatic carbon between aggregates and SOM fractions revealed that microbial synthesis and decomposition of organic matter along with selective preservation of alkyl and aromatic carbon play significant roles in determining the composition of organic matter in aggregates. - PublicationThe relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia(Elsevier BV, 2014)
; ; ; ; ;Schwenke, Graeme ;McLeod, Malem ;Badgery, WarwickBaldock, JefferyThis project aimed to identify land uses and soil management practices that have significant associations with soil organic carbon (SOC) stocks (0-0.3 m) in New South Wales (NSW), Australia. The work presented in this paper is based on a one-off survey targeting key land uses and management practices of eastern NSW. Because of the nature of the work, the land uses and management combinations surveyed in different soils and climatic conditions were significantly unbalanced, and separately analyzing associations after breaking the dataset into different land uses may lead to significant increases in Type errors. Therefore, redundancy analysis (RDA) was undertaken to explore the association between explanatory variables (i.e., land uses, soil management, soil properties and environmental variables) and the variation in stocks (mass per unit area) of particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC) across 780 sites in eastern NSW, south eastern Australia. Results indicated that soil properties, land uses, soil management and environmental variables together could explain 52% of total variation in stocks of the SOC fractions. Specifically soil properties and environmental variables explained 42.8%, whereas land uses and management practices together explained 9.2% of the total variation in SOC fractions. A forward selection RDA was also undertaken considering soil properties and environmental variables as covariates to assess the statistical significance of land uses and management practices on stocks of POC, HOC and ROC. We found that pasture had significant positive associations on stocks of carbon fractions. Among the soil properties and environmental variables rainfall, longitude and elevation had a significant positive influence while pH and bulk density had a significantly negative influence on the HOC, POC and ROC stocks. Using a novel multivariate technique, the current work identified the land uses and soil management that had significant impact on carbon stocks in soil after accounting for influences soil properties and environmental variables. - PublicationImpact of carbon farming practices on soil carbon in northern New South Wales(CSIRO Publishing, 2013)
; ;Lonergan, Vanessa; ;Fornasier, Flavio ;Macdonald, Catriona ;Harden, Steven ;Kawasaki, AkitomoSingh, Brajesh KThis study sought to quantify the influence of 'carbon farming' practices on soil carbon stocks, in comparison with conventional grazing and cropping, in northern New South Wales. The study had two components: assessment of impacts of organic amendments on soil carbon and biological indicators in croplands on Vertosols of the Liverpool Plains; and assessment of the impact of grazing management on soil carbon in Chromosols of the Northern Tablelands. The organic amendment sites identified for the survey had been treated with manures, composts, or microbial treatments, while the conventional management sites had received only chemical fertilisers. The rotational grazing sites had been managed so that grazing was restricted to short periods of several days, followed by long rest periods (generally several months) governed by pasture growth. These were compared with sites that were grazed continuously. No differences in total soil carbon stock, or soil carbon fractions, were observed between sites treated with organic amendments and those treated with chemical fertiliser. There was some evidence of increased soil carbon stock under rotational compared with continuous grazing, but the difference was not statistically significant. Similarly, double-stranded DNA (dsDNA) stocks were not significantly different in either of the management contrasts, but tended to show higher values in organic treatments and rotational grazing. The enzymatic activities of β-glucosidase and leucine-aminopeptidase were significantly higher in rotational than continuous grazing but statistically similar for the cropping site treatments. Relative abundance and community structure, measured on a subset of the cropping sites, showed a higher bacteria : fungi ratio and provided evidence that microbial process rates were significantly higher in chemically fertilised sites than organic amendment sites, suggesting enhanced mineralisation of organic matter under conventional management. The higher enzyme activity and indication of greater efficiency of microbial populations on carbon farming sites suggests a greater potential to build soil carbon under these practices. Further research is required to investigate whether the indicative trends observed reflect real effects of management. - PublicationMean Residence Time of Soil Organic Carbon in Aggregates Under Contrasting Land Uses Based on Radiocarbon Measurements(University of Arizona, 2013)
; ;Hua, Quan; ; ; Radiocarbon is a useful tool for studying carbon dynamics in soil aggregates. The objective of the current study was to determine the mean residence time (MRT) of soil organic carbon (SOC) in macroaggregates and microaggregates under contrasting land uses. Contrasting land uses investigated at Alfisol (equivalent to Dermosol in Australian Soil Classification) sites were native pasture (NP), crop-pasture rotation (CP), and Eucalypt woodland (WL), whereas in Oxisol (Ferrosol in Australian Soil Classification) sites, land uses comprised improved pasture (IP), cropping (CR), and forest (FR). Soil aggregates were separated into macroaggregates (250-2000 μm) and microaggregates (53-250 μm) by wet-sieving, and their 14C signatures were determined by accelerator mass spectrometry (AMS). The 14C activity in both macro- and microaggregates was >100 pMC, indicating the presence of post-bomb carbon in the soil. The mean residence time (MRT) of SOC in macro- and microaggregates (MRTagg) was on average 68 yr longer in the Oxisol compared with that in the Alfisol. The MRTagg in microaggregates was 10 yr longer than that of macroaggregates in the Alfisol. However, the MRTagg in microaggregates was 50 yr shorter compared to macroaggregates in the Oxisol. The MRT of macro- and microaggregates can be separated into active, slow, and stable SOC pools. Among the 3 SOC pools, the MRT of the stable pool is of higher significance in terms of SOC stabilization in soil aggregates because of its longer MRT. However, isolation and direct MRT estimation of the stable SOC pool is difficult. The MRT of active and slow SOC pools associated with macro- and microaggregates was measured using a SOC mineralization experiment to estimate the MRT of the stable SOC pool under contrasting land uses by applying a mass balance criterion. The MRT of active (MRTA) and slow (MRTS) SOC pools in macro- and microaggregates varied between 1-50 days and 13-38 yr, respectively. The estimated MRT of the stable pool carbon (MRTP) in microaggregates was 897 yr longer compared to that of macroaggregates in the Alfisol. However, in the Oxisol, MRTP in microaggregates was 568 yr shorter than that of macroaggregates. Among the land uses, WL in Alfisol and CR in Oxisol had longer MRTagg and MRTP compared to other land uses. - PublicationHow do microaggregates stabilize soil organic matter?(International Union of Soil Sciences and Australian Society of Soil Science Inc, 2010)
; ; Microaggregates play a key role to protect soil organic matter (SOM) from microbial decomposition. Several physical, physico-chemical and biochemical mechanisms have been proposed to describe the SOM stabilization in soil. However, no scientific consensus exists about a range of hypotheses. The aim of this review is to consolidate common notions and hypotheses on physical and physico-chemical protection mechanisms. The key notion of physical protection is exclusion of microbes and enzymes from microaggregate pores. Recent investigations showed higher microbial diversity and presence of accessible pore networks in microaggregates. The physico-chemical protection mechanism is more robust but monolayer or patchy adsorption of SOM onto clay surfaces requires further detailed research. The adsorption of SOM and exo-enzymes on pore walls and clay surfaces has been identified as a plausible concept of SOM stabilization. - PublicationClimate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia(Nature Publishing Group, 2015)
; ; ;Mcleod, Malem ;Badgery, Warwick ;Dang, Yash P ;Bell, Mike ;O'Leary, Garry ;Liu, De Li ;Baldock, Jeffery ;Delgado-Baquerizo, Manuel; ;Robertson, Fiona ;Dalal, Ram ;Page, Kathryn ;Crawford, Doug; Australia's "Direct Action" climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions.