Options
Rabbi, Sheikh Mohammad F
Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity
2016, Fazle Rabbi, S M, Daniel, Heiko, Lockwood, Peter V, Macdonald, C, Pereg, Lily, Tighe, Matthew, Wilson, Brian, Young, Iain
Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Microaggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes.
Impact of carbon farming practices on soil carbon in northern New South Wales
2013, Cowie, Annette, Lonergan, Vanessa, Fazle Rabbi, Sheikh Mohammad, Fornasier, Flavio, Macdonald, Catriona, Harden, Steven, Kawasaki, Akitomo, Singh, Brajesh K
This study sought to quantify the influence of 'carbon farming' practices on soil carbon stocks, in comparison with conventional grazing and cropping, in northern New South Wales. The study had two components: assessment of impacts of organic amendments on soil carbon and biological indicators in croplands on Vertosols of the Liverpool Plains; and assessment of the impact of grazing management on soil carbon in Chromosols of the Northern Tablelands. The organic amendment sites identified for the survey had been treated with manures, composts, or microbial treatments, while the conventional management sites had received only chemical fertilisers. The rotational grazing sites had been managed so that grazing was restricted to short periods of several days, followed by long rest periods (generally several months) governed by pasture growth. These were compared with sites that were grazed continuously. No differences in total soil carbon stock, or soil carbon fractions, were observed between sites treated with organic amendments and those treated with chemical fertiliser. There was some evidence of increased soil carbon stock under rotational compared with continuous grazing, but the difference was not statistically significant. Similarly, double-stranded DNA (dsDNA) stocks were not significantly different in either of the management contrasts, but tended to show higher values in organic treatments and rotational grazing. The enzymatic activities of β-glucosidase and leucine-aminopeptidase were significantly higher in rotational than continuous grazing but statistically similar for the cropping site treatments. Relative abundance and community structure, measured on a subset of the cropping sites, showed a higher bacteria : fungi ratio and provided evidence that microbial process rates were significantly higher in chemically fertilised sites than organic amendment sites, suggesting enhanced mineralisation of organic matter under conventional management. The higher enzyme activity and indication of greater efficiency of microbial populations on carbon farming sites suggests a greater potential to build soil carbon under these practices. Further research is required to investigate whether the indicative trends observed reflect real effects of management.