Options
Warwick, Nigel
Water relations of wallum species in contrasting groundwater habitats of Pleistocene beach ridge barriers on the lower north coast of New South Wales, Australia
2015, Griffith, Stephen John, Rutherford, Susan, Clarke, Kerri L, Warwick, Nigel W
This study examined the water relations of sclerophyllous evergreen vegetation (wallum) on coastal sand barriers in eastern Australia. Many wallum species may be groundwater dependent, although the extent of this dependency is largely unknown. Twenty-six perennial tree, shrub and herb species were investigated in three groundwater habitats (ridge, open depression, closed depression). Pre-dawn and midday shoot xylem water potentials (ᴪₓ) were measured monthly between late autumn 2010 and late summer 2011. Pressure-volume curve traits were determined in mid- to late spring 2009, including the osmotic potential at full (π100) and zero (π0) turgor, and bulk modulus of elasticity (ε). Carbon isotope ratios (δ¹³C) were also determined in mid- to late spring 2009, to measure water-use efficiency (WUE). The species displayed a range of physiological strategies in response to water relations, and these strategies overlapped among contrasting growth forms and habitats. Linear relationships between osmotic and elastic adjustment were significant. A strong correlation between δ¹³C and distribution along the hydrological gradient was not apparent. 'Banksia ericifolia' subsp. 'macrantha' (A.S.George) A.S.George, 'Eucalyptus racemosa' Cav. subsp. 'racemosa' and 'Eucalyptus robusta' Sm. displayed little seasonal variation in ᴪₓ and maintained a comparatively high pre-dawn ᴪₓ, and are therefore likely to be phreatophytic. Wetland vegetation in the lowest part of the landscape appeared to tolerate extreme fluctuations in water availability linked to a prevailing climatic pattern of variable and unreliable seasonal rainfall.
Climate trends in the wood anatomy of 'Acacia sensu stricto' (Leguminosae: Mimosoideae)
2017, Warwick, Nigel W, Hailey, Luke, Clarke, Kerri L, Gasson, Peter E
Background and Aims. This study investigates the structural diversity of the secondary xylem of 54 species of 'Acacia' from four taxonomic sections collected across five climate regions along a 1200 km E-W transect from sub-tropical [approx. 1400 mm mean annual precipitation (MAP)] to arid (approx. 240 mm MAP) in New South Wales, Australia. 'Acacia sensu stricto' (s.s.) is a critical group for understanding the effect of climate and phylogeny on the functional anatomy of wood. Methods. Wood samples were sectioned in transverse, tangential and radial planes for light microscopy and analysis. Key Results. The wood usually has thick-walled vessels and fibres, paratracheal parenchyma and uniseriate and biseriate rays, occasionally up to four cells wide. The greater abundance of gelatinous fibres in arid and semi-arid species may have ecological significance. Prismatic crystals in chambered fibres and axial parenchyma increased in abundance in semi-arid and arid species. Whereas vessel diameter showed only a small decrease from the sub-tropical to the arid region, there was a significant 2-fold increase in vessel frequency and a consequent 3-fold decrease in the vulnerability index. Conclusions. Although the underlying phylogeny determines the qualitative wood structure, climate has a significant influence on the functional wood anatomy of 'Acacia s.s.', which is an ideal genus to study the effect of these factors.
Drought survival of Australian rainforest seedlings is influenced by species evolutionary history and soil type
2013, Curran, Timothy J, Clarke, Peter J, Warwick, Nigel W
Water availability influences regional tree distributions in rainforests, often by affecting survival of seedlings. The occurrence of 'dry rainforest' species in subhumid climates has been attributed to the evolution of drought-resistant species from their mesic rainforest congeners. Many genera are found in both dry and mesic rainforest of Australia but the extent to which this is due to differential drought resistance has not been confirmed experimentally. We compared drought survival within three congeneric pairs of dry and mesic rainforest taxa in a glasshouse dry-down experiment. Soil type could also play a role, with dry rainforests mostly occurring on fine-textured soils such as loams, which have a high available water-holding capacity, compensating for lower rainfall. Hence, we grew plants in loam or sand soil. In all pairs, the dry rainforest taxon was better able to survive drought, providing support for the climate-induced evolution of a dry rainforest flora and further confirming that drought resistance of seedlings can shape tree species distributions at regional scales. Two of three pairs had higher seedling survival on basalt-derived loam soil, suggesting that such soils may aid seedling persistence during drought. Over evolutionary time, this may have resulted in the high fidelity of dry rainforest for these soils.
Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in 'Acacia' (Leguminosae: Mimosoideae)?
2013, Brown, Sharon Louise, Warwick, Nigel W, Prychid, Chrissie
Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous 'Acacia' sect. 'Juliflorae' (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation.