Options
Robson, Andrew
Loading...
Given Name
Andrew
Andrew
Surname
Robson
UNE Researcher ID
une-id:arobson7
Email
arobson7@une.edu.au
Preferred Given Name
Andrew
School/Department
School of Science and Technology
3 results
Now showing 1 - 3 of 3
- Publication'Sugar from Space': Using Satellite Imagery to Predict Cane Yield and VariabilitySatellite imagery has been demonstrated to be an effective technology for producing accurate pre-harvest estimates in many agricultural crops. For Australian sugarcane, yield forecasting models have been developed from a single date SPOT satellite image acquired around peak crop growth. However, a failure to acquire a SPOT image at this critical growth stage, from continued cloud cover or from competition for the satellite, can prevent an image being captured and therefore a forecast being made for that season. In order to reduce the reliance on a single image capture and to improve the accuracies of the forecasts themselves, time series yield prediction models have been developed for eight sugarcane growing regions using multiple years of free Landsat satellite images. In addition to the forecasting of average regional yield, an automated computational and programming procedure enabling the derivation of crop vigour variability (GNDVI) maps from the freely available Sentinel 2 satellite imagery was developed. These maps, produced for 15 sugarcane growing regions during the 2017 growing season, identify both variations in crop vigour across regions and within every individual crop. These outputs were made available to collaborating mills within each growing region. This paper presents the accuracies achieved from the time series yield forecasting models versus actual 2017 yields for the respective regions, as well as provides an example of the derived mapping outputs.
- PublicationMulti-temporal landsat algorithms for the yield prediction of sugarcane crops in Australia(Precision Agriculture Association New Zealand, 2017)
; ; Accurate with-in season yield prediction is important for the Australian sugarcane industry as it supports crop management and decision making processes, including those associated with harvest scheduling, storage, milling, and forward selling. In a recent study, a quadratic model was developed from multi-temporal Landsat imagery (30 m spatial resolution) acquired between 2001-2014 (15th November to 31st July) for the prediction of sugarcane yield grown in the Bundaberg region of Queensland, Australia. The resultant high accuracy of prediction achieved from the Bundaberg model for the 2015 and 2016 seasons inspired the development of similar models for the Tully and Mackay growing regions. As with the Bundaberg model, historical Landsat imagery was acquired over a 12 year (Tully) and 10 year (Mackay) period with the capture window again specified to be between 1st November to 30th June to coincide with the sugarcane growing season. All Landsat images were downloaded and processed using Python programing to automate image processing and data extraction. This allowed the model to be applied rapidly over large areas. For each region, the average green normalized difference vegetation index (GNDVI) for all sugarcane crops was extracted from each image and overlayed onto one time scale 1st November to 30th June. Using the quadratic model derived from each regional data set, the maximum GNDVI achieved for each season was calculated and regressed against the corresponding annual average regional sugarcane yield producing strong correlation for both Tully (R2 = 0.89 and RMSE = 5.5 t/ha) and Mackay (R2 = 0.63 and RMSE = 5.3 t/ha). Moreover, the establishment of an annual crop growth profile from each quadratic model has enabled a benchmark of historic crop development to be derived. Any deviation of future crops from this benchmark can be used as an indicator of widespread abiotic or biotic constraints. As well as regional forecasts, the yield algorithms can also be applied at the pixel level to allow individual yield maps to be derived and delivered near real time to all Australian growers and millers. - PublicationUsing GeoEye-1 Imagery for Multi-Temporal Object-Based Detection of Canegrub Damage in Sugarcane Fields in Queensland, Australia(Taylor & Francis, 2018)
;Johansen, Kasper ;Sallam, Nader; ;Samson, Peter ;Chandler, Keith ;Derby, Lisa ;Eaton, AllenJennings, JillianThe greyback canegrub ('Dermolepida albohirtum') is the main pest of sugarcane crops in all cane-growing regions between Mossman (16.5°S) and Sarina (21.5°S) in Queensland, Australia. In previous years, high infestations have cost the industry up to $40 million. However, identifying damage in the field is difficult due to the often impenetrable nature of the sugarcane crop. Satellite imagery offers a feasible means of achieving this by examining the visual characteristics of stool tipping, changed leaf color, and exposure of soil in damaged areas. The objective of this study was to use geographic object-based image analysis (GEOBIA) and high-spatial resolution GeoEye-1 satellite imagery for three years to map canegrub damage and develop two mapping approaches suitable for risk mapping. The GEOBIA mapping approach for canegrub damage detection was evaluated over three selected study sites in Queensland, covering a total of 254 km² and included five main steps developed in the eCognition Developer software. These included: (1) initial segmentation of sugarcane block boundaries; (2) classification and subsequent omission of fallow/harvested fields, tracks, and other non-sugarcane features within the block boundaries; (3) identification of likely canegrub-damaged areas with low NDVI values and high levels of image texture within each block; (4) the further refining of canegrub damaged areas to low, medium, and high likelihood; and (5) risk classification. The validation based on field observations of canegrub damage at the time of the satellite image capture yielded producer's accuracies between 75% and 98.7%, depending on the study site. Error of commission occurred in some cases due to sprawling, drainage issues, wind, weed, and pig damage. The two developed risk mapping approaches were based on the results of the canegrub damage detection. This research will improve decision making by growers affected by canegrub damage.