Options
Goatley, Christopher
Loading...
Given Name
Christopher
Christopher
Surname
Goatley
UNE Researcher ID
une-id:cgoatley
Email
cgoatley@une.edu.au
Preferred Given Name
Christopher
School/Department
School of Environmental and Rural Science
22 results
Now showing 1 - 10 of 22
- PublicationBiologically mediated sediment fluxes on coral reefs: sediment removal and off-reef transportation by the surgeonfish 'Ctenochaetus striatus'Off-reef sediment transport by the surgeonfish 'Ctenochaetus striatus' (Acanthuridae) was quantified on the reef crest at Lizard Island, Great Barrier Reef. Three independent methods were implemented to estimate sediment ingestion rates. These considered (1) the bite rate and bite volume, (2) the defecation rate and faecal pellet size, and (3) the average gut contents and throughput rate. The 3 methods provided a broad range of estimates of sediment ingestion from 8.8 ± 2.4, to 66.1 ± 14.4 g fish-1 d-1 (mean ± SE). Nevertheless, these estimates were comparable to rates of sediment ingestion by parrotfishes (Labridae), the other major sediment-moving group on reefs. Overall, 36.5% of all sediment ingested was transported from the upper reef crest into deeper water, equating to a removal rate of 28.6 ± 6.2 kg 100 m-2 yr-1 at the study site. By brushing the reef, 'C. striatus' reduces the sediment loading in the epilithic algal matrix (EAM) while causing little damage to the algal turf. Reducing sediments in EAMs provides favourable settlement surfaces for benthic organisms and increases the palatability of the EAM to herbivorous reef fishes, thus supporting reef resilience. The ecological importance of 'C. striatus', which is abundant on reefs throughout the IndoPacific, appears to have been underestimated, particularly when considering reef sediment dynamics.
- PublicationFishes on coral reefs: changing roles over the past 240 million yearsKey morphological traits reveal changes in functional morphospace occupation of reef fish assemblages over time. We used measurements of key functional attributes (i.e., lower jaw length and orbit diameter) of 208 fossil fish species from five geological periods to create bivariate plots of functional morphological traits through time. These plots were used to examine possible function and ecological characteristics of fossil reef fish assemblages throughout the Mesozoic and Cenozoic. A previously unknown trend of increasing orbit diameter over time became apparent. The Teleostei are the principal drivers of this change. The Eocene appears to mark a dramatic increase in two previously rare feeding modes in fishes: nocturnal feeding and high-precision benthic feeding. Interestingly, members of the Pycnodontiformes had relatively large eyes since the Triassic and appear to be the ecological precursors of their later teleost counterparts and may have been among the earliest nocturnal feeding fishes. Our results highlight potential changes in the roles of fishes on coral reefs through time.
- PublicationThe Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey(Cell Press, 2015)
;Bellwood, David R; ;Bellwood, Orpha ;Delbarre, Daniel JFriedman, MattJaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5]. - PublicationLow-quality sediments deter grazing by the parrotfish 'Scarus rivulatus' on inner-shelf reefsElevated sediment loads in the epilithic algal matrix (EAM) deter grazing by herbivorous fishes and may compromise their critical roles on coral reefs. However, the properties of sediments that drive herbivore deterrence are unknown. Binary choice trials in aquaria were used to examine the effects of three sediment attributes-sediment source, grain size and organic load-on grazing by the abundant inner-shelf parrotfish, Scarus rivulatus. Fish were presented with a choice between EAM-covered rocks treated with (a) terrigenous or reefal sediments, (b) fine or coarse sediments or (c) sediments with high or low organic loads. Scarus rivulatus did not show a preference for sediments from different sources (terrigenous vs. reefal); however, a clear preference was evident for fine-grained sediments over coarse (109 % more bites) and sediments with high organic loads over low (147 % more bites). The avoidance of coarse sediments is likely to be a key factor driving the inhibition of grazing on mid-shelf reefs, which are dominated by coarse sediments. In contrast, on innershelf reefs, grazing by parrotfishes may be deterred primarily by high sediment loads, which reduce the proportional organic content in EAM sediments. Our study highlights the potential impact of sediments on critical ecological processes and the threats posed by changing sediment loads on inner-shelf reefs.
- PublicationReef-scale partitioning of cryptobenthic fish assemblages across the Great Barrier Reef, AustraliaOnshore to offshore gradients in marine assemblages have been well documented on coral reefs, with most studies showing a distinct separation between onshore and offshore locations. Here we use enclosed anaesthetic sampling of small, cryptobenthic reef fishes to assess changes in assemblage composition across the Great Barrier Reef continental shelf. The cryptobenthic fishes exhibited fine-scale partitioning across the shelf. Three dominant species of goby accounted for over 55% of all fishes collected, with 1 species characterising each of the 3 key shelf positions: inner-, mid- and outer-shelf. Multivariate analyses of assemblage composition revealed further separation of reefs within the inner- and mid-shelf positions, highlighting the exceptional sensitivity of cryptobenthic reef fish assemblages to shelf position, with a progressive separation of individual reef assemblages with distance from the shore. These among-reef patterns contrast markedly with other reef fish taxa which invariably show 2 broad assemblages across the continental shelf (inner- vs. a composite mid- and outer-shelf community). As a result of this exceptional sensitivity to environmental conditions, cryptobenthic reef fish communities may represent good subjects for high-resolution monitoring of disturbances on coral reefs.
- PublicationClarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscusThe lined bristletooth, Ctenochaetus striatus, and the brown surgeonfish, Acanthurus nigrofuscus, are among the most abundant surgeonfishes on Indo-Pacific coral reefs. Yet, the functional role of these species has been the focus of an ongoing debate lasting at least six decades. Specifically, to what extent are C. striatus herbivorous like the visually similar A. nigrofuscus? To address this question, we used natural feeding surfaces, covered with late successional stage reef-grown algal turfs, to examine turf algal removal by the two species. Surfaces exposed to C. striatus in laboratory experiments exhibited no significant reductions in turf length or area covered by turfing algae. In marked contrast, A. nigrofuscus reduced turf length by 51% and area covered by turfing algae by 15% in 1 h. The gut contents of specimens from the reef revealed that A. nigrofuscus predominantly ingests algae (the dominant item in 79.6–94.7% of gut content quadrats), while C. striatus ingests detritus and sediments (dominant in 99.6–100% of quadrats). Therefore, C. striatus ingests detritus and sediment, leaving mature algal turfs relatively intact, while A. nigrofuscus directly removes and ingests turf algae. The function of C. striatus differs from cropping herbivorous surgeonfishes such as A. nigrofuscus. On coral reefs, C. striatus brush detrital aggregates from algal turfs, removing microorganisms, organic detritus and inorganic sediment. Confusion over the functional role of C. striatus may stem from an inability to fit it into a single functional category.
- PublicationEvolution of long-toothed fishes and the changing nature of fish-benthos interactions on coral reefs(Nature Publishing Group, 2014)
;Bellwood, David R ;Hoey, Andrew S ;Bellwood, OrphaInteractions between fishes and the benthos have shaped the development of marine ecosystems since at least the early Mesozoic. Here, using the morphology of fish teeth as an indicator of feeding abilities, we quantify changes over the last 240 million years of reef fish evolution. Fossil and extant coral reef fish assemblages reveal exceptional stasis in tooth design over time, with one notable exception, a distinct long-toothed form. Arising only in the last 40 million years, these long-toothed fishes have bypassed the invertebrate link in the food chain, feeding directly on benthic particulate material. With the appearance of elongated teeth, these specialized detritivores have moved from eating invertebrates to eating the food of invertebrates. Over evolutionary time, fishes have slid back down the food chain. - PublicationSite fidelity and homing in juvenile rabbitfishes (Siganidae)The behaviour of juvenile fishes is critical in establishing the link between recruitment and subsequent adult populations. If juvenile fishes move, they can respond to variation in local conditions before adult home ranges are established. Alternatively, if juveniles establish fixed home ranges at settlement, their decisions may determine future population densities at small spatial scales. Field observations and translocations revealed that juvenile rabbitfishes ('Siganus corallinus' and 'S. doliatus') have small home ranges and strong homing abilities (covering 6 m in 1 h or 36 m within 24 h). Only four of 22 individuals failed to return; all were transferred up-current, suggesting that olfaction is important in homing. Small home ranges and strong homing tendencies in juvenile herbivores suggest that decisions made by recruits will impact the spatial extent of both adult fishes and the functional roles they play within ecosystems.
- PublicationMoving towards the equator: reverse range shifts in two subtropical reef fish species, 'Chromis nitida' (Pomacentridae) and 'Pseudolabrus guentheri' (Labridae)Two reef fish species, 'Pseudolabrus guentheri' and 'Chromis nitida', traditionally restricted to the central and southern Great Barrier Reef (GBR) were observed in the northern GBR. This range extension is unusual as it runs contrary to the general expectations of poleward range shifts associated with climate change.
- PublicationSediment suppresses herbivory across a coral reef depth gradientSediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h̄¹ m̄²). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h̄¹ m̄²) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.
- «
- 1 (current)
- 2
- 3
- »