Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Publication

Projecting date palm distribution in Iran under climate change using topography, physicochemical soil properties, soil taxonomy, land use, and climate data

2014, Shabani, Farzin, Kumar, Lalit, Taylor, Subhashni

This study set out to model potential date palm distribution under current and future climate scenarios using an emission scenario, in conjunction with two different global climate models (GCMs): CSIRO-Mk3.0 (CS), and MIROC-H (MR), and to refine results based on suitability under four nonclimatic parameters. Areas containing suitable physicochemical soil properties and suitable soil taxonomy, together with land slopes of less than 10° and suitable land uses for date palm ('Phoenix dactylifera') were selected as appropriate refining tools to ensure the CLIMEX results were accurate and robust. Results showed that large regions of Iran are projected as likely to become climatically suitable for date palm cultivation based on the projected scenarios for the years 2030, 2050, 2070, and 2100. The study also showed CLIMEX outputs merit refinement by nonclimatic parameters and that the incremental introduction of each additional parameter decreased the disagreement between GCMs. Furthermore, the study indicated that the least amount of disagreement in terms of areas conducive to date palm cultivation resulted from CS and MR GCMs when the locations of suitable physicochemical soil properties and soil taxonomy were used as refinement tools.

Loading...
Thumbnail Image
Publication

Distribution of Date Palms in the Middle East Based on Future Climate Scenarios

2015, Shabani, Farzin, Kumar, Lalit, Taylor, Subhashni

One consequence of climate change is change in the phenology and distribution of plants, including the date palm ('Phoenix dactylifera' L.). Date palm, as a crop specifically adapted to arid conditions in desert oases and to very high temperatures, may be dramatically affected by climate changes. Some areas that are climatically suitable for date palm growth at the present time will become climatically unsuitable in the future, while other areas that are unsuitable under current climate will become suitable in the future. This study used CLIMEX to estimate potential date palm distribution under current and future climate scenarios using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results of this study indicated that Saudi Arabia, Iraq and Iran are most affected countries as a result of climate change. In Saudi Arabia, 129 million ha (68%) of currently suitable area is projected to become unsuitable by 2100. However, this is based on climate modelling alone. The actual decrease in area may be much smaller when abiotic and other factors are taken into account. On the other hand, 13 million ha (33%) of currently unsuitable area is projected to become suitable by 2100 in Iran. Additionally, by 2050, Israel, Jordan and western Syria will become climatically more suitable. Cold and heat stresses will play a significant role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations to identify areas for cultivation of this profitable crop in the future, and to address those areas that will need greater attention because they are becoming marginal regions for date palm cultivation.