Options
Groves, Peter J
- PublicationCan a combination of vaccination, probiotic and organic acid treatment in layer hens protect against early life exposure to Salmonella Typhimurium and challenge at sexual maturity?(Elsevier Ltd, 2021)
; ;Williamson, Sarah L; ;Diamond, Madeline ;Melanie Ngo ;Han, AnitaSharpe, Sue MDay old layer chicks were challenged with Salmonella Typhimurium using a seeder bird technique. Treatment groups were untreated control, administration of a probiotic in drinking water weekly, vaccination by intramuscular injection of a live aro-A deletion mutant vaccine at 10 weeks of age (woa) followed by an oral dose at 16 woa, probiotic administration plus vaccination, vaccination plus the administration of an organic acid preparation in feed from 16 woa and a combination of probiotic, vaccine and organic acid. Faecal shedding was monitored by culture at 1, 2, 3, 4, 8, 12, 15, 17, 20, 21, 23 and 25 woa and in dust from settle plates by PCR at intervals from 8 woa. Birds from each group were separated at 17 and 18 woa and challenged orally with 106 CFU of S. Typhimurium. Both untreated and probiotic groups shed Salmonella until 56 days. Salmonella was also detected in dust from 8 until 12 woa but little after this. After vaccination, from sexual maturity (18 woa) all groups except those that were vaccinated with and without probiotic re-excreted Salmonella. The probiotic alone was ineffective against this re-excretion and all groups receiving organic acids shed Salmonella. At 17 woa, unchallenged controls were fully susceptible to caecal colonization, however all other groups showed reduced susceptibility, including the untreated challenged group. However, at 18 woa (sexual maturity) only the groups that were vaccinated with or without probiotic showed reduced susceptibility to colonization. The organic acid treated groups (including the vaccinated group) did not show a difference to the untreated controls. S. Typhimurium demonstrated an ability to re-emerge at sexual maturity, similar to other serovars. The vaccine assisted in limiting the reexcretion at sexual maturity and decreased susceptibility to subsequent challenge. Use of a probiotic augmented the vaccine’s protective capacity.
- PublicationAssessment of A20 infectious laryngotracheitis vaccine take in meat chickens using swab and dust samples following mass vaccination in drinking water(Elsevier BV, 2020-12)
;Assen, Awol M ;Stillman, Mark ;Alfirevich, Sheridan; ; Infectious laryngotracheitis, caused by the alphaherpesvirus infectious laryngotracheitis virus (ILTV), is an important disease of chickens. Partial control of this disease in meat chickens is commonly achieved by mass vaccination with live virus in drinking water. There is a need for a practical test to evaluate vaccination outcomes. For the Serva ILTV vaccine, quantitative real-time PCR (qPCR) enumeration of ILTV genome copies (GC) in flock level dust samples collected at 7-8 days post vaccination (dpv) can be used to differentiate flocks with poor and better vaccine take. This study aimed to validate this approach for A20, another widely used ILT vaccine in Australia. In four meat chicken flocks vaccinated with A20 in water using two different water stabilization times (20 or 40 min), swabs from the trachea and choanal cleft and dust samples were collected at 0, 7, 14 and 21 dpv. ILTV GC detection in swabs and dust was highest at 7 dpv and at this time ILTV GC load in dust was strongly and positively associated with vaccine take in individual birds assessed by swab samples. Choanal cleft swabs provided significantly fewer ILTV positive results than paired tracheal swab samples but the level of ILTV GC detected was similar. Water stabilization time had only minor effects on vaccination response in favour of the shorter time. Location of dust collection had no effect on viral load measured in dust samples. Dust samples collected at 0 and 7 dpv can be used to assess the vaccination status of flocks.