Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Publication

Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks SW China: Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction

2017, Zhao, Tianyu, Feng, Qinglai, Metcalfe, Ian, Milan, Luke, Liu, Guichun, Zhang, Zhibin

Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hfisotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A metafelsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200-1060 Ma), younger Grenvillian (960 Ma) and Pan-African (650-500 Ma), with Hf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an 'Asian Hun superterrane' (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440-420 Ma when this 'Asian Hun superterrane' collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.

Loading...
Thumbnail Image
Publication

Discovery of a Late Devonian magmatic arc in the southern Lancangjiang zone, western Yunnan: Geochemical and zircon U-Pb geochronological constraints on the evolution of Tethyan ocean basins in SW China

2016, Nie, Xiaomei, Feng, Qinglai, Metcalfe, Ian, Baxter, Alan, Liu, Guichun

The Tibetan Plateau and western Yunnan are known to have formed by the amalgamation of Gondwana-derived continental blocks and arc terranes as a result of Tethyan subduction followed by continental collisions during the Paleozoic, Mesozoic and Cenozoic. The Devonian and the southern Lancangjiang zone, western Yunnan is a critical period and key region for studying the transformation between the "Proto-Tethyan" and Paleo-Tethyan oceanic systems. New geochemical data and LA-ICPMS U-Pb zircon ages of the Late Devonian volcanogenic sediments from the southern Lancangjiang zone in western Yunnan, SW China, are presented. The studied sedimentary rocks of the Nanguang Formation are volcaniclastic rocks with high volcanic lithic content (55-65%, mostly andesite, dacite, with some rhyolite and tuffs). Whole rock geochemistry, zircon trace elements and detrital modal analyses indicate derivation from a subduction-related magmatic arc. Three tuff samples yield Late Devonian weighted mean 206Pb/238U ages of 378 ± 4 Ma, 366 ± 5 Ma and 382 ± 8 Ma, suggesting a Late Devonian depositional age. 104 zircon U-Pb analyses on 104 zircon grains from two sandstone samples present extremely tight age clusters, mostly ranging from 380 Ma to 360 Ma. This indicates a single Late Devonian igneous source. A short transport distance and a high rate of denudation and deposition within an arc-related basin are considered likely for the tuffs and volcaniclastic rocks in this study. This implies the presence of an as yet unidentified Late Devonian magmatic arc in the southern Lancangjiang zone. The cryptic Late Devonian arc is likely to represent either a continuation of Late Ordovician-Late Silurian "Proto-Tethyan" subduction or the initial stage of the Paleo-Tethyan Lincang Arc and indicates that subduction of the Changning-Menglian ocean beneath the Simao/Indochina Block occurred in the Late Devonian.