Options
Coventry, William
Loading...
Given Name
William
William
Surname
Coventry
UNE Researcher ID
une-id:wcovent2
Email
wcovent2@une.edu.au
Preferred Given Name
William
School/Department
School of Psychology
2 results
Now showing 1 - 2 of 2
- PublicationEstimating the Extent of Parameter Bias in the Classical Twin Design: A Comparison of Parameter Estimates From Extended Twin-Family and Classical Twin DesignsThe 'classical twin design' (CTD) circumvents parameter indeterminacy by assuming (1) negligible higher-order epistasis; and (2) either nonadditive genetic or common environmental effects are nonexistent, creating two potential sources of bias (Eaves et al., 1978; Grayson, 1989). Because the extended 'twin-family design' (ETFD) uses many more unique covariance observations to estimate parameters, common environmental and nonadditive genetic parameters can be simultaneously estimated. The ETFD thereby corrects for what is likely to be the largest of the two sources of bias in CTD parameter estimates (Keller & Coventry, 2005). In the current paper, we assess the extent of this and other potential sources of bias in the CTD by comparing all published ETFD parameter estimates to CTD parameter estimates derived from the same data. CTD estimates of the common environment were lower than ETFD estimates of the common environment for some phenotypes, but for other phenotypes (e.g., stature in females and certain social attitudes), what appeared as the common environment was resolved to be assortative mating in the ETFD. On average, CTD estimates of nonadditive genetic factors were 43% lower, and additive genetic factors 63% higher, than ETFD estimates. However, broad-sense heritability estimates from the CTD were only 18% higher than ETFD estimates, highlighting that the CTD is useful for estimating broad-sense but not narrow-sense heritability. These results suggest that CTD estimates can be misleading when interpreted literally, but useful, albeit coarse, when interpreted properly.
- PublicationQuantifying and Addressing Parameter Indeterminacy in the Classical Twin DesignThe classical twin design (CTD) is the most common method used to infer genetic and environmental causes of phenotypic variation. As has long been acknowledged, different combinations of the common environment/assortative mating, and additive, dominant, and epistatic genetic effects can lead to the same observed covariation between twin pairs, meaning that there is an inherent indeterminacy in parameter estimates arising from the CTD. The CTD circumvents this indeterminacy by assuming that higher-order epistasis is negligible and that the effects of either dominant genetic variation or the common environment are nonexistent. These assumptions, however, lead to consistent biases in parameter estimation. The current paper quantifies these biases and discusses alternative strategies for dealing with parameter indeterminacy in twin designs. One strategy is to model the similarity among other relatives in addition to twins (extended twin-family designs), which reduces but does not eliminate indeterminacy in parameter estimates. A more general strategy, applicable to all twin designs, is to present the parameter indeterminacy explicitly, as in a graph. Presenting the space of mathematically equally likely parameter values is important, not only because it aids the proper interpretation of twin design findings, but also because it keeps behavioral geneticists themselves mindful of methodological assumptions that can easily go unexamined.