Options
Shabani, Farzin
Loading...
Given Name
Farzin
Farzin
Surname
Shabani
UNE Researcher ID
une-id:fshaban2
Email
fshaban2@une.edu.au
Preferred Given Name
Farzin
School/Department
School of Environmental and Rural Science
2 results
Now showing 1 - 2 of 2
- PublicationColonization and Biodegradation of Photo-Oxidized Low-Density Polyethylene (LDPE) by New Strains of 'Aspergillus' sp. and 'Lysinibacillus' sp.(Taylor & Francis Inc, 2014)
; ;Pourbabaee, Ahmad Ali ;Alikhani, Hossein Ali; The primary objective of this study was the isolation of low-density polyethylene (LDPE)-degrading microorganisms. Soil samples were obtained from an aged municipal landfill in Tehran, Iran, and enrichment culture procedures were performed using LDPE films and powder. Screening steps were conducted using linear paraffin, liquid ethylene oligomer, and LDPE powder as the sole source of carbon. Two landfill-source isolates, identified as 'Lysinibacillus xylanilyticus' XDB9 (T) strain S7-10F and 'Aspergillus niger' strain F1-16S, were selected as super strains. Photo-oxidation (25 days under ultraviolet [UV] irradiation) was used as a pretreatment of the LDPE samples without pro-oxidant additives. The PE biodegradation process was performed for 56 days in a liquid mineral medium using UV-irradiated pure LDPE films without pro-oxidant additives in the presence of the bacterial isolate, the fungal isolate, and the mixture of the two isolates. The process was monitored by measuring the fungal biomass, the bacterial growth, and the pH of the medium. During the process, the fungal biomass and the bacterial growth increased, and the pH of the medium decreased, which suggests the utilization of the preoxidized PE by the selected isolates as the sole source of carbon. Carbonyl and double bond indices exhibited the highest amount of decrement and increment, respectively, in the presence of the fungal isolate, and the lowest indices were obtained from the treatment of a mixture of both fungal and bacterial isolates. Fourier transform infrared (FT-IR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the selected isolates modified and colonized preoxidized pure LDPE films without pro-oxidant additives. - PublicationBiodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of 'Lysinibacillus xylanilyticus' and 'Aspergillus niger' in Soil(Public Library of Science, 2013)
; ;Pourbabaee, Ahmad Ali ;Alikhani, Hossein Ali; Esmaeili, EnsiehIn this study, two strains of 'Aspergillus' sp. and 'Lysinibacillus' sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.