Now showing 1 - 5 of 5
  • Publication
    Development of the beef genomic pipeline for BREEDPLAN single step evaluation
    (Association for the Advancement of Animal Breeding and Genetics (AAABG), 2017) ; ; ; ; ; ;
    Single step genomic BLUP (SS-GBLUP) for BREEDPLAN beef cattle evaluations is currently being tested for implementation across a number of breeds. A genomic data pipeline has been developed to enable efficient analysis of the industry-recorded SNP genotypes for incorporation in SS-GBLUP analyses. Complex data collection, along with format and/or naming convention inconsistencies challenges efficient data processing. This pipeline includes quality control of variable formatted data, and imputation of genotypes, for building the genomic relationship matrix required for implementation into single step evaluation.
  • Publication
    Breedplan single-step genomic evaluations delivers increased accuracies across all breeds and EBVs
    (Association for the Advancement of Animal Breeding and Genetics (AAABG), 2023-07-26) ; ; ; ; ;

    Forward cross-validation analyses were used to quantify the changes in BREEDPLAN EBVs from single-step genetic evaluations compared to traditional pedigree-based evaluations for Angus, Brahman, Hereford, Santa Gertrudis and Wagyu breeds. EBVs were generated from full multi-trait evaluations for each breed and compared to EBVs from an evaluation where all the phenotypic records were removed from the last four year drops of animals (termed Validation). Results for the sub-set of validation animals that were SNP genotyped showed the population-based accuracy of single-step EBVs were higher than pedigree-based accuracies for all breeds and traits. However, the magnitudes of the accuracy increases differed across breeds and traits, and generally reflected differences in the size of the training populations for each trait. The largest increase in accuracy, averaged across all traits in a breed, was observed for Angus (24%) and the smallest for Santa Gertrudis (5%). Across breeds, the largest increases in accuracy occurred for the growth trait EBVs compared to smaller increases for abattoir carcase, female reproduction and NFI EBVs. This study has shown the benefits of single-step genomic evaluations, and the opportunity to increase rates of genetic progress, through the increased accuracy generated. The study also highlighted breeds and traits which could benefit from additional recording to increase accuracies from single-step.

  • Publication
    Remodelling the genetic evaluation of NFI in beef cattle - Part 1: Developing an equivalent genetic model
    (Association for the Advancement of Animal Breeding and Genetics (AAABG), 2023-07-26) ; ; ;
    Jeyaruban, G M
    ;
    ; ; ;

    Net feed intake (NFI) is the residual portion of daily feed intake (DFI) not explained by growth or maintenance requirements. The NFI phenotype (NFIp) is based on a 70-day test period where DFI and fortnightly weights (to calculate average daily gain (ADG) and maintenance as metabolic mid-weight (MMWT)) are measured. Recording NFIp is costly, and shortening the test length would be advantageous. However, research has shown that ADG cannot be accurately measured from a shortened test. Genetic NFI EBVs (NFIg) were calculated using DFI EBV adjusted for ADG and MMWT EBV and were shown to have a Pearson correlation of 0.99 with the NFIp EBV from 3,088 Angus steers. The regression slope between NFIg and NFIp EBVs was 1.14. Alternative NFIg models where growth and maintenance requirements were obtained from BREEDPLAN live weight traits instead of live weights recorded in the test period, demonstrated high Pearson correlations (r=0.87 to 0.93) and regression slopes between 0.63 and 0.97 with NFIp EBVs. Results suggest that genetic NFI EBVs can be obtained, with growth and maintenance requirements being determined from BREEDPLAN live weight traits. This provides the opportunity to determine if the length of the test to measure DFI can be shortened, reducing the cost of recording NFI per animal.

  • Publication
    Remodelling the genetic evaluation of NFI in beef cattle - Part 2: Shortening the length of the feed intake test
    (Association for the Advancement of Animal Breeding and Genetics (AAABG), 2023-07-26) ; ; ; ; ; ; ;

    BREEDPLAN net feed intake (NFI) EBV is derived from a phenotypic regression based on a 70-day feed intake test. Genetic NFI (NFIg) EBVs have been proposed as an alternative EBV and this recent development may also allow for a shortened feed intake test period. This study used feed intake records of 3,088 Angus steers from the full 70-day test and compared them to daily feed intake (DFI) from shortened test periods. Results showed DFI from shortened test periods had similar means but increased phenotypic variation. Phenotypic correlation with DFI from the full test period decreased as the test period decreased in weekly intervals and ranged between 0.75 and 0.99. NFIg EBVs were predicted using DFI from different length tests. The mean of all NFIg EBVs was close to zero, but the EBV standard deviation increased as the test period decreased. Pearson correlations between NFIg EBVs from a full test period and reduced test periods ranged between 0.73 and 0.99, the regression slope of NFIg from reduced test periods on NFIg from the full test period ranged between 0.73 and 0.95, and the bias ranged between 0.00 and 0.02. These results indicate that as the test period decreases, the spread of EBVs increases, resulting in extreme animals having overestimated NFIg EBVs. A shortened DFI test period could be used to estimate NFIg EBVs.

  • Publication
    Implementation of single-step genomic BREEDPLAN evaluations in Australian beef cattle
    Single-step GBLUP (ssGBLUP) procedures have now been implemented into Australia's BREEDPLAN genetic evaluation system for beef cattle. This major remodelling required the development of many new features and modifications to existing procedures. The first requirement was the construction of a flexible but robust set of procedures for handling and processing of raw SNP genotypes to enable the construction of suitable genomic relationship matrices. The analytical processes were modified to replace with and for the explicit fitting of genetic groups. A new accuracy algorithm was developed and the solver was revised. Examples from Australian Angus and Brahman breeds comparing current BLUP evaluation with ssGBLUP are presented to show the resultant changes and effects of implementing the new genomic evaluations.