Now showing 1 - 5 of 5
  • Publication
    1,4-dihydroxy quininib attenuates growth of colorectal cancer cells and xenografts and regulates the TIE-2 signaling pathway in patient tumours
    (Impact Journals LLC, 2019)
    Butler, Clare T
    ;
    Kennedy, Susan A
    ;
    ;
    Doyle, Ronan
    ;
    Conroy, Emer
    ;
    Gallagher, William M
    ;
    O’Sullivan, Jacintha
    ;
    Kennedy, Breandán N

    Colorectal cancer (CRC) is the second leading cause of cancer associated deaths in developed countries. Cancer progression and metastatic spread is reliant on new blood vasculature, or angiogenesis. Tumour-related angiogenesis is regulated by proand anti-angiogenic factors secreted from malignant tissue in a stepwise process. Previously we structurally modified the small anti-angiogenic molecule quininib and discovered a more potent anti-angiogenic compound 1, 4 dihydroxy quininib (Q8), an antagonist of cysteinyl leukotriene receptor-1 with VEGF-independent bioactivity. Here, Q8, quininib (Q1) and five structural analogues were assayed for anti-tumorigenic effects in pre-clinical cancer models. Q8 reduced clone formation of the human colorectal cancer cell line HT29-Luc2. Gene silencing of CysLT1 in HT29-Luc2 cells significantly reduced expression of calpain-2. In human ex vivo colorectal cancer tumour explants, Q8 significantly decreased the secretion of both TIE-2 and VCAM-1 expression. In vivo Q8 was well tolerated up to 50 mg/kg by Balb/C mice and significantly more effective at reducing tumour volume in colorectal tumour xenografts compared to the parent drug quininib. In tumour xenografts, Q8 significantly reduced expression of the angiogenic marker calpain-2. In summary, we propose Q8 may act on the TIE-2-Angiopoietin signalling pathway to significantly inhibit the process of tumour angiogenesis in colorectal cancer.

  • Publication
    Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma
    (Springer New York LLC, 2018)
    Slater, K
    ;
    Hoo, P S
    ;
    ;
    Piulats, J M
    ;
    Villanueva, A
    ;
    Portela, A
    ;
    Kennedy, B N

    Uveal melanoma is a rare, but deadly, form of eye cancer that arises from melanocytes within the uveal tract. Although advances have emerged in treatment of the primary tumour, patients are still faced with vision loss, eye enucleation and lethal metastatic spread of the disease. Approximately 50% of uveal melanoma patients develop metastases, which occur most frequently in the liver. Metastatic patients encounter an extremely poor prognosis" as few as 8% survive beyond 2 years. Understanding of the genetic underpinnings of this fatal disease evolved in recent years with the identification of new oncogenic mutations that drive uveal melanoma pathogenesis. Despite this progress, the lack of successful therapies or a proven standard-of-care for uveal melanoma highlights the need for new targeted therapies. This review focuses on the recently identified CYSLTR2 oncogenic mutation in uveal melanoma. Here, we evaluate the current status of uveal melanoma and investigate how to better understand the role of this CYSLTR2 mutation in the disease and implications for patients harbouring this mutation.

  • Publication
    Leukaemia inhibitory factor is associated with treatment resistance in oesophageal adenocarcinoma
    (Impact Journals LLC, 2018) ;
    Lynam-Lennon, Niamh
    ;
    Kennedy, Susan A
    ;
    Dunne, Margaret R
    ;
    Aird, John J
    ;
    Foley, Emma K
    ;
    Clarke, Niamh
    ;
    Ravi, Narayanasamy
    ;
    O’Toole, Dermot
    ;
    Reynolds, John V
    ;
    Kennedy, Breandán N
    ;
    O’Sullivan, Jacintha

    Oesophageal cancer is an aggressive disease with a poor 5 year survival rate of <20% of diagnosed patients. Unfortunately, only 20-30% Oesophageal Adenocarinoma (OAC) patients show a beneficial response to neoadjuvant therapy (neoCT). Inflammation influences OAC given the increased risk of cancer development and poor outcome for obese patients where altered secretion of adipokines and cytokines from adipose tissue contributes a pro-tumourigenic environment. We carried out a large proteomics screen of 184 proteins to compare the inflammatory and oncogenic profiles of an isogenic radioresistant in-vitro model of OAC. We found that leukaemia inhibitory factor (LIF), an IL-6 type cytokine, was significantly elevated in radioresistant OAC cells (p=0.007). Furthermore, significantly higher circulating levels of LIF were present in the serum from treatment-naive OAC patients who had a subsequent poor pathological response to neo-adjuvant therapy, (p=0.037). Quantitative PCR analysis revealed expression of LIF receptor (LIFR) may function as a predictive indicator of response to neo-adjuvant chemoradiation therapy in OAC. LIF was demonstrated to be actively secreted from human OAC treatment-naïve biopsies and significantly correlated with the secretion of bFGF, VEGF-A and IL-8 (p<0.05, R=1), (p<0.05, R=0.9429), and (p<0.05, R=1) respectively. Importantly, LIF secretion negatively correlated with tumour infiltrating lymphocytes in pre-treatment OAC patient biopsies, (r=-0.8783, p=0.033). Elevated circulating LIF is a marker of poor response to neo-adjuvant treatment in OAC and secretion of this chemokine from the tumour is tightly linked with pro-tumourigenic mediators including bFGF, VEGF-A and IL-8. Targeting this pathway may be a novel mechanism enhance neoadjuvant treatment responses in OAC.

  • Publication
    Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma
    (Elsevier Ireland Ltd, 2019) ;
    Dunne, Margaret R
    ;
    Lynam-Lennon, Niamh
    ;
    Kennedy, Susan A
    ;
    Cannon, Aoife
    ;
    Reynolds, Alison L
    ;
    Maher, Stephen G
    ;
    Reynolds, John V
    ;
    Kennedy, Breandán N
    ;
    O'Sullivan, Jacintha

    Oesophageal adenocarcinoma (OAC) is an aggressive disease with 5-year survival rates of < 20%. Only 20–30% OAC patients show a beneficial response to neoadjuvant therapy. Altered mitochondrial function is linked with radioresistance in OAC. We identified pyrazinib (P3), a pyrazine phenol small molecule drug with anti-angiogenic and anti-metabolic activity in-vivo in zebrafish and in-vitro isogenic models of OAC radioresistance. Pyrazinib (P3) significantly inhibited blood vessel development in zebrafish (p < 0.001). In-vivo in zebrafish and in-vitro in an isogenic model of OAC radioresistance, pyrazinib (P3) significantly reduced measures of oxidative phosphorylation and glycolysis. Pyrazinib (P3) significantly reduced the surviving fraction in OE33P" radiation-sensitive and OE33R" radiation-resistant cells following irradiation. Under hypoxic conditions pyrazinib (P3) significantly reduced OE33R cell survival following 4 Gy irradiation (p = 0.0216). Multiplex ELISA showed significantly higher secreted levels of 9 of 30 detected inflammatory and angiogenic factors in OE33R radioresistant cells compared to OE33P cells" IL-8, IL-4, IL-6, IL-2, IL-12p70, IL-10, MCP-1, IP-10, ICAM (p < 0.05). Pyrazinib (P3) significantly reduced the secretions of IL-6 (p = 0.0006), IL-8 (p = 0.0488), and IL-4 (p = 0.0111) in OE33R cells. Collectively, these findings support further development of pyrazinib (P3) as a novel therapeutic radiosensitiser in OAC.

  • Publication
    Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells
    (MDPI AG, 2019) ;
    Bibby, Becky AS
    ;
    Dunne, Margaret R
    ;
    Kennedy, Susan A
    ;
    Davern, Maria B
    ;
    Kennedy, Breandán N
    ;
    Maher, Stephen G
    ;
    O’Sullivan, Jacintha

    Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies" however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC.