Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Publication

Overexpression of the brassinosteroid biosynthetic gene 'DWF4' in 'Brassica napus' simultaneously increases seed yield and stress tolerance

2016, Sahni, Sangita, Prasad, Bishun D, Liu, Qing, Grbic, Vojislava, Sharpe, Andrew, Singh, Surinder P, Krishna, Priti

As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the 'Arabidopsis' BR biosynthetic gene 'AtDWF4' in the oilseed plant 'Brassica napus' and scored growth and stress response phenotypes. The transgenic 'B. napus' plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens 'Leptosphaeria maculans' and 'Sclerotinia sclerotiorum'. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions.

Loading...
Thumbnail Image
Publication

The Expanded and Diversified Calmodulin-Binding Protein 60 (CBP60) Family in Rice (Oryza sativa L.) Is Conserved in Defense Responses against Pathogens

2022, Kumari, Diksha, Prasad, Bishun Deo, Sahni, Sangita, Nonhebel, Heather M, Krishna, Priti

Plant disease management is key to sustainable production of staple food crops. Calcium (Ca2+) signal and phytohormones play critical roles in regulating plant defense responses against pathogens. The Ca2+ signals are sensed, decoded and transduced by calmodulin and other Ca2+ -binding proteins, followed by interaction with and modulation of activities of target proteins such as calmodulin-binding proteins (CBPs). Members of the Arabidopsis CBP60 gene family, AtCBP60g and AtSARD1, have emerged as major regulators of immune responses. In this study, we identified a 15 member CBP60 gene family in rice (Oryza sativa) of which OsCBP60g-3, OsCBP60g-4, OsCBP60a and OsSARD-like1 genes were consistently upregulated in rice seedlings in response to infection with both fungal (Magnaporthe oryzae) and bacterial (Xanthomonas oryzae) pathogens as well as by salicylic acid (SA). OsCBP60g-4 and OsCBP60g-3 were induced maximally by SA and brassinosteroid (BR), respectively, and OsCBP60g-4 was expressed at 3-fold higher levels in the M. oryzae resistant rice genotype (IC-346004) as compared to the susceptible rice genotype (Rajendra Kasturi). The considerable expansion of the immunity clade and the up-regulation of several OsCBP60 genes in response to pathogens and defense hormones supports the importance of further investigating OsCBP60 genes as targets for increasing disease resistance in rice.