Options
Ledogar, Justin
Relationship between foramen magnum position and locomotion in extant and extinct hominoids
2017-12, Neaux, Dimitri, Bienvenu, Thibaut, Guy, Franck, Daver, Guillaume, Sansalone, Gabriele, Ledogar, Justin A, Rae, Todd C, Wroe, Stephen, Brunet, Michel
From the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies.
Morphological integration affects the evolution of midline cranial base, lateral basicranium, and face across primates
2019-09, Neaux, Dimitri, Wroe, Stephen, Ledogar, Justin A, Ledogar, Sarah Heins, Sansalone, Gabriele
Objectives: The basicranium and face are two integrated bony structures displaying great morphological diversity across primates. Previous studies in hominids determined that the basicranium is composed of two independent modules: the midline basicranium, mostly influenced by brain size, and the lateral basicranium, predominantly associated with facial shape. To better assess how morphological integration impacts the evolution of primate cranial shape diversity, we test to determine whether the relationships found in hominids are retained across the order. Materials and methods: Three-dimensional landmarks (29) were placed on 143 computed tomography scans of six major clades of extant primate crania. We assessed the covariation between midline basicranium, lateral basicranium, face, and endocranial volume using phylogenetically informed partial least squares analyses and phylogenetic generalized least squares models. Results: We found significant integration between lateral basicranium and face and between midline basicranium and face. We also described a significant correlation between midline basicranium and endocranial volume but not between lateral basicranium and endocranial volume. Discussion: Our findings demonstrate a significant and pervasive integration in the craniofacial structures across primates, differing from previous results in hominids. The uniqueness of module organization in hominids may explain this distinction. We found that endocranial volume is significantly integrated to the midline basicranium but not to the lateral basicranium. This finding underlines the significant effect of brain size on the shape of the midline structures of the cranial base in primates. With the covariations linking the studied features defined here, we suggest that future studies should focus on determining the causal links between them.
Biting mechanics and niche separation in a specialized clade of primate seed predators
2018-01-11, Ledogar, Justin A, Luk, Theodora H Y, Perry, Jonathan M G, Neaux, Dimitri, Wroe, Stephen
We analyzed feeding biomechanics in pitheciine monkeys (Pithecia, Chiropotes, Cacajao), a clade that specializes on hard-husked unripe fruit (sclerocarpy) and resistant seeds (seed predation). We tested the hypothesis that pitheciine crania are well-suited to generate and withstand forceful canine and molar biting, with the prediction that they generate bite forces more efficiently and better resist masticatory strains than the closely-related Callicebus, which does not specialize on unripe fruits and/or seeds. We also tested the hypothesis that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasing sclerocarpic specialization with respect to biting leverage and craniofacial strength, consistent with anterior dental morphology. We found that pitheciines have higher biting leverage than Callicebus and are generally more resistant to masticatory strain. However, Cacajao was found to experience high strain magnitudes in some facial regions. We therefore found limited support for the morphocline hypothesis, at least with respect to the mechanical performance metrics examined here. Biting leverage in Cacajao was nearly identical (or slightly less than) in Chiropotes and strain magnitudes during canine biting were more likely to follow a Cacajao-Chiropotes-Pithecia trend of increasing strength, in contrast to the proposed morphocline. These results could indicate that bite force efficiency and derived anterior teeth were selected for in pitheciines at the expense of increased strain magnitudes. However, our results for Cacajao potentially reflect reduced feeding competition offered by allopatry with other pitheciines, which allows Cacajao species to choose from a wider variety of fruits at various stages of ripeness, leading to reduction in the selection for robust facial features. We also found that feeding biomechanics in sympatric Pithecia and Chiropotes are consistent with data on food structural properties and observations of dietary niche separation, with the former being well-suited for the regular molar crushing of hard seeds and the latter better adapted for breaching hard fruits.
Basicranium and face: Assessing the impact of morphological integration on primate evolution
2018, Neaux, Dimitri, Sansalone, Gabriele, Ledogar, Justin, Ledogar, Sarah, Luk, Theodora, Wroe, Stephen
The basicranium and facial skeleton are two integrated structures displaying great morphological diversity across primates. Previous studies focusing on limited taxonomic samples have demonstrated that morphological integration has a significant impact on the evolution of these structures. However, this influence is still poorly understood. A more complete understanding of craniofacial integration across primates has important implications for functional hypotheses of primate evolution. In the present study, we analyzed a large sample of primate species to assess how integration affects the relationship between basicranial and facial evolutionary pathways across the order. First, we quantified integration and modularity between basicranium and face using phylogenetically-informed partial least squares analyses. Then, we defined the influence of morphological integration between these structures on rates of evolution, using a time-calibrated phylogenetic tree, and on disparity through time, comparing the morphological disparity across the tree with that expected under a pure Brownian process. Finally, we assessed the correlation between the basicranium and face, and three factors purported to have an important role in shaping these structures during evolution: endocranial volume, positional behavior (i.e., locomotion and posture), and diet. Our findings show that the face and basicranium, despite being highly integrated, display significantly different evolutionary rates. However, our results demonstrate that morphological integration impacted shape disparity through time. We also found that endocranial volume and positional behavior are important drivers of cranial shape evolution, partly affected by morphological integration.