Options
Price, Jodi N
Loading...
Given Name
Jodi N
Jodi
Surname
Price
UNE Researcher ID
une-id:jprice20
Email
jprice20@une.edu.au
Preferred Given Name
Jodi
School/Department
Administration
2 results
Now showing 1 - 2 of 2
- PublicationStage 2: Grazing/Landuse in the Macquarie Marshes and Gwydir Wetlands: Final Report to the New South Wales Department of Environment and Climate Change(University of New England, 2008)
; ;Berney, Peter; ; NSW Department of Planning and Environment, NSW Wetland Recovery Program (WRP)The Gwydir Wetlands and Macquarie Marshes are both examples of variable and dynamic floodplain wetland ecosystems. Both systems have experienced a major alteration to their hydrology as a result of river regulation, and the two regions have a long history of floodplain grazing. As efforts are made to address the hydrological issues in these wetlands, there is also a need to better understand how other disturbances such as grazing may be impacting on the ecological functioning of these ecosystems. This study investigated five areas of wetland condition, namely vegetation composition, soil seed bank, soil chemistry, water quality and aquatic invertebrates, to determine the nature and the magnitude of any impacts that grazing by domestic stock may be having on these two wetland ecosystems. - PublicationDrivers of change in the Social-Ecological Systems of the Gwydir Wetlands and Macquarie Marshes in northern New South Wales, Australia(CSIRO Publishing, 2011)
; ; ;MacDonald, Matthew JBerney, PeterThe Murray-Darling Basin is a Social-Ecological System (SES) of major importance to Australia and includes extensive wetland areas in the north-western parts of New South Wales. The Gwydir Wetlands and the Macquarie Marshes are the particular focus of this paper. These two wetland SES have undergone five successive adaptive cycles (phases) since they were first visited by Europeans in the early 19th century and the ecological, economic and social drivers initiating each transformation to a new cycle are described and analysed. The arrival of the European settlers with their domestic livestock rapidly displaced the Indigenous SES and the wetlands were extensively grazed; during wet periods the livestock were moved out of the wetlands and moved back in as the water receded. More recent land-use changes resulted from the building of major dams to enable storage of water for use in irrigated agriculture. A consequence of dam construction and water use has been a reduction in the frequency and extent of flooding, which has allowed many parts of the wetlands to be continually grazed. Furthermore, as machinery capable of cultivating the very heavy textured soils became available, dryland cropping became a major enterprise in areas of the floodplain where the likelihood of flooding was reduced. With the reduction in flooding, these wetland sites have been seriously degraded. The final phase has seen the invasion by an exotic weed, lippia ['Phyla canescens' (Kunth) Greene], which is a perennial that grows mat-like between other species of plants and spreads to produce a virtually mono-specific stand. The domestic livestock carrying capacity of the land becomes more or less zero and the conservation value of the wetlands is also dramatically decreased. Therefore, we suggest that lippia should be classed as an ecosystem engineer that has caused the latest transformation of these wetland SES and suggest research directions to investigate how they can be managed to revert to a state in which lippia is no longer dominant.