Now showing 1 - 9 of 9
  • Publication
    Planar vortex patch problem in incompressible steady flow
    (Academic Press, 2015)
    Cao, Daomin
    ;
    Peng, Shuangjie
    ;
    In this paper, we consider the planar vortex patch problem in an incompressible steady flow in a bounded domain Ω of R2...
  • Publication
    Multiplicity of solutions for the plasma problem in two dimensions
    (Academic Press, 2010)
    Cao, Daomin
    ;
    Peng, Shuangjie
    ;
    Let Ω be a bounded domain in R², u+=u if u⩾0, u+=0 if u<0, u−=u+−u. In this paper we study the existence of solutions to the following problem arising in the study of a simple model of a confined plasma ... where ν is the outward unit normal of ∂Ω at x, c is a constant which is unprescribed, and I is a given positive constant. The set Ωp = {x ∈ Ω, u(x) < 0} is called plasma set. Existence of solutions whose plasma set consisting of one component and asymptotic behavior of plasma set were studied by Caffarelli and Friedman (1980) [3] for large λ. Under the condition that the homology of Ω is nontrivial we obtain in this paper by a constructive way that for any given integer k⩾1, there is λk>0 such that for λ>λk, (Pλ) has a solution with plasma set consisting of k components.
  • Publication
    Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth
    (Academic Press, 2015)
    Deng, Yinbin
    ;
    Peng, Shuangjie
    ;
    This paper is concerned with the positive solutions for generalized quasilinear Schrödinger equations in R'N' with critical growth which have appeared from plasma physics, as well as high-power ultrashort laser in matter. By using a change of variables and variational argument, we obtain the existence of positive solutions for the given problem.
  • Publication
    A new type of solutions for a singularly perturbed elliptic Neumann problem
    (EMS Press, 2007)
    Gongbao, Li
    ;
    Peng, Shuangjie
    ;
    We prove the existence of positive solutions concentrating simultaneously on some higher dimensional manifolds near and on the boundary of the domain for a nonlinear singularly perturbed elliptic Neumann problem.
  • Publication
    Asymptotic behaviour of ground state solutions for the Hénon equation
    (Oxford University Press, 2009)
    Cao, Daomin
    ;
    Peng, Shuangjie
    ;
    Let B₁(0) 'C RN' be the unit ball centred at the origin, N ≥ 3. In this paper, we analyse the profile of the ground state solution of the Hénon equation - ∆u = │x│'au⁻¹ in B₁ (0), u = 0 on ∂B₁ (0). We prove that for fixed p ε (2,2*), (2* = 2N/(N - 2)), the maximum point xₐ of the ground state solution uₐ satisfies a(1 - │xₐ│) → l ε(0,+ ∞) as a → ∞. We also obtain the asymptotic behaviour of uₐ, which shows that the ground state solution is non-radial. Moreover, we prove the existence of multi-peaked solutions and give their asymptotic behaviour.
  • Publication
    On the Webster Scalar Curvature Problem on the CR Sphere with a Cylindrical-Type Symmetry
    (Springer New York LLC, 2013)
    Cao, Daomin
    ;
    Peng, Shuangjie
    ;
    By variational methods, for a kind of Webster scalar curvature problems on the CR sphere with cylindrically symmetric curvature, we construct some multi-peak solutions as the parameter is sufficiently small under certain assumptions. We also obtain the asymptotic behaviors of the solutions.
  • Publication
    Infinitely Many Positive Solutions for Nonlinear Schrödinger-Poisson System
    (World Scientific Publishing Co Pte Ltd, 2010)
    Li, Gongbao
    ;
    Peng, Shuangjie
    ;
    In this paper, simulated by the paper of Wei and Yan [33] (see also [30–32]), we intend to find infinitely many positive solutions to (1.2) for all p ∈ (1, 5) under weaker integrability conditions on K(y) and Q(y). In [33], a single equation, this is, K(y) ≡ 0 in (1.2), was studied and infinitely many non-radial solutions were found in the case that Q(y) is radial. For this, they employed a very novel idea, that is, they use k, the number of the bumps of the solutions, as the parameter to construct Infinitely Many Solutions for Schrödinger-Poisson System 1071 spike solutions for the Schrödinger equation considered.
  • Publication
    Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations
    (Academic Press, 2016)
    Deng, Yinbin
    ;
    Peng, Shuangjie
    ;
    This paper is concerned with the solitary wave solutions for a generalized quasilinear Schrödinger equation in RN involving critical exponents, which have appeared from plasma physics, as well as high-power ultashort laser in matter. We find the related critical exponents for a generalized quasilinear Schrödinger equation and obtain its solitary wave solutions by using a change of variables and variational argument.
  • Publication
    Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth
    (Elsevier Inc, 2012)
    Cao, Daomin
    ;
    Peng, Shuangjie
    ;
    In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth...