Options
Title
Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of 'Lysinibacillus xylanilyticus' and 'Aspergillus niger' in Soil
Fields of Research (FoR) 2008:
Author(s)
Publication Date
2013
Socio-Economic Objective (SEO) 2008
Open Access
Yes
Abstract
In this study, two strains of 'Aspergillus' sp. and 'Lysinibacillus' sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.
Publication Type
Journal Article
Source of Publication
PLoS One, 8(9), p. 1-10
Publisher
Public Library of Science
Place of Publication
United States of America
ISSN
1932-6203
Fields of Research (FoR) 2020
Socio-Economic Objective (SEO) 2020
Peer Reviewed
Yes
HERDC Category Description
Peer Reviewed
Yes
Statistics to Oct 2018:
Visitors: 274<br />Views: 271<br />Downloads: 0
Permanent link to this record