Options
Nowack, Julia
- PublicationCool echidnas survive the fireFires have occurred throughout history, including those associated with the meteoroid impact at the Cretaceous-Palaeogene (K-Pg) boundary that eliminated many vertebrate species. To evaluate the recent hypothesis that the survival of the K-Pg fires by ancestral mammals was dependent on their ability to use energy-conserving torpor,we studied body temperature fluctuations and activity of an egg-laying mammal, the echidna ('Tachyglossus aculeatus'), often considered to be a 'living fossil', before, during and after a prescribed burn. All but one study animal survived the fire in the prescribed burn area and echidnas remained inactive during the day(s) following the fire and substantially reduced body temperature during bouts of torpor. For weeks after the fire, all individuals remained in their original territories and compensated for changes in their habitat with a decrease in mean body temperature and activity. Our data suggest that heterothermy enables mammals to outlast the conditions during and after a fire by reducing energy expenditure, permitting periods of extended inactivity. Therefore, torpor facilitates survival in a fire-scorched landscape and consequently may have been of functional significance for mammalian survival at the K-Pg boundary.
- PublicationSnoozing through the storm: torpor use during a natural disaster(Nature Publishing Group, 2015)
; ;Rojas, A Daniella; Although storms provide an extreme environmental challenge to organisms and are predicted to increase in frequency and intensity due to climate change, there are no quantitative observations on the behaviour and physiology of animals during natural disasters. We provide the first data on activity and thermal biology of a free-ranging, arboreal mammal during a storm with heavy rain and category 1 cyclone wind speeds. We studied a population of sugar gliders ('Petaurus breviceps'), a species vulnerable to bad weather due to their small body size and mode of locomotion, in a subtropical habitat during spring when storms are common. Although torpor is generally rare in this species, sugar gliders remained inactive or reduced foraging times during the storm and further minimized energy demands by entering deep torpor. All animals survived the storm and reverted to normal foraging activity during the following night(s). It thus appears that heterothermic mammals have a crucial adaptive advantage over homeothermic species as they can outlast challenging weather events, such as storms and floods, by reducing metabolism and thus energetic needs. - PublicationPhysiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrateThe recent observation that torpor plays a key role in post-fire survival has been mainly attributed to the reduced food resources after fires. However, some of these adjustments can be facilitated or amplified by environmental changes associated with fires, such as the presence of a charcoal-ash substrate. In a previous experiment on a small terrestrial mammal the presence of charcoal and ash linked to food restriction intensified torpor use. However, whether fire cues also act as a trigger of torpor use when food is available and whether they affect other species including arboreal mammals remains elusive. To evaluate whether smoke, charcoal and ash can act as proximate triggers for an impending period of food shortage requiring torpor for mammals, we conducted an experiment on captive sugar gliders (Petaurus breviceps), a small, arboreal marsupial, housed in outside aviaries under different food regimes and natural ambient conditions. When food was available, fire simulation via exposure to smoke and charcoal-ash substrate caused a significant earlier start of activity and a significant decrease in resting body temperature. In contrast, only when food was withheld, did smoke and charcoal-ash exposure significantly enhance torpor depth and duration. Thus, our study not only provides evidence that fire simulation does affect arboreal and terrestrial species similarly, but also suggests that smoke and ash were presumably selected as cues for torpor induction because they indicate an impending lack of food.
- PublicationMore functions of torpor and their roles in a changing world
Increased winter survival by reducing energy expenditure in adult animals is often viewed as the primary function of torpor. However, torpor has many other functions that ultimately increase the survival of heterothermic mammals and birds. In this review, we summarize new findings revealing that animals use torpor to cope with the conditions during and after natural disasters, including fires, storms, and heat waves. Furthermore, we suggest that torpor, which also prolongs longevity and was likely crucial for survival of mammals during the time of the dinosaur extinctions, will be advantageous in a changing world. Climate change is assumed to lead to an increase in the occurrence and intensity of climatic disasters, such as those listed above and also abnormal floods, droughts, and extreme temperatures. The opportunistic use of torpor, found in many heterothermic species, will likely enhance survival of these challenges, because these species can reduce energy and foraging requirements. However, many strictly seasonal hibernators will likely face the negative consequences of the predicted increase in temperature, such as range contraction. Overall, available data suggest that opportunistic heterotherms with their flexible energy requirements have an adaptive advantage over homeotherms in response to unpredictable conditions.
- PublicationPhenotypic plasticity of post-fire activity and thermal biology of a free-ranging small mammalEcosystems can change rapidly and sometimes irreversibly due to a number of anthropogenic and natural factors, such as deforestation and fire. How individual animals exposed to such changes respond behaviourally and physiologically is poorly understood. We quantified the phenotypic plasticity of activity patterns and torpor use - a highly efficient energy conservation mechanism - in brown antechinus ('Antechinus stuartii'), a small Australian marsupial mammal. We compared groups in densely vegetated forest areas (pre-fire and control) with a group in a burned, open habitat (post-fire). Activity and torpor patterns differed among groups and sexes. Females in the post-fire group spent significantly less time active than the other groups, both during the day and night. However, in males only daytime activity declined in the post-fire group, although overall activity was also reduced on cold days in males for all groups. The reduction in total or diurnal activity in the post-fire group was made energetically possible by a ~3.4-fold and ~2.2-fold increase in the proportion of time females and males, respectively, used torpor in comparison to that in the pre-fire and control groups. Overall, likely due to reproductive needs, torpor was more pronounced in females than in males, but low ambient temperatures increased torpor bout duration in both sexes. Importantly, for both male and female antechinus and likely other small mammals, predator avoidance and energy conservation - achieved by reduced activity and increased torpor use - appear to be vital for post-fire survival where ground cover and refuges have been obliterated.
- PublicationRare and Opportunistic Use of Torpor in Mammals—An Echo from the Past?(Oxford University Press, 2023-06-16)
; ; ; Levesque, Danielle LTorpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
- PublicationFriends with benefits: the role of huddling in mixed groups of torpid and normothermic animalsHuddling and torpor are widely used for minimizing heat loss by mammals. Despite the questionable energetic benefits from social heterothermy of mixed groups of warm normothermic and cold torpid individuals, the heterothermic Australian sugar glider ('Petaurus breviceps') rests in such groups during the cold season. To unravel why they might do so, we examined torpor expression of two sugar glider groups of four individuals each in outside enclosures during winter. We observed 79 torpor bouts during 50 days of observation and found that torpor bouts were longer and deeper when all individuals of a group entered torpor together, and therefore infer that they would have saved more energy in comparison to short and shallow solitary torpor bouts. However, all gliders of either group only expressed torpor uniformly in response to food restriction, whereas on most occasions at least one individual per group remained normothermic. Nevertheless, the presence of warm gliders in mixed groups also appears to be of energetic advantage for torpid individuals, because nest box temperature was negatively correlated with the number of torpid gliders, and normothermic individuals kept the nest temperature at a value closer to the threshold for thermoregulatory heat production during torpor. Our study suggests that mixed groups of torpid and normothermic individuals are observed when environmental conditions are adverse but food is available, leading to intermediate energy savings from torpor. However, under especially challenging conditions and when animals are starving, energy savings are maximized by uniform and pronounced expression of torpor.
- PublicationCan hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torporIncreased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures (Tb) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at Tbs below normothermic levels.Our data show that torpid eastern pygmy-possums ('Cercartetus nanus') are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature (Ta) of 15 °C (Tb ~18 °C), whereas females only raised their heads. The responses were less pronounced at Tₐ 10 °C. The first coordinated movement of possums along a branch was observed at a mean Tb of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean Tb of 24.4 °C. Our study shows that hibernators can sense smoke and move at low Tb. However, our data also illustrate that at Tb ≤13 °C, 'C. nanus' show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond.
- PublicationNon-invasive evaluation of stress hormone responses in a captive population of sugar gliders (Petaurus breviceps)
Faecal hormone monitoring offers a robust tool to non-invasively determine the physiological stress experienced by an individual when faced with natural or human-driven stressors. Although already quantified for several species, the method needs to be validated for each new species to ensure reliable quantification of the respective glucocorticoids. Here we investigated whether measurement of faecal glucocorticoid metabolite (fGCM) provides a feasible and non-invasive way to assess the physiological state of sugar gliders (Petaurus breviceps), an arboreal marsupial native to Australia, by using both a biological and physiological validation. Our analysis confirmed that the cortisol enzyme immunoassay (EIA) was the most appropriate assay for monitoring fGCM concentrations in sugar gliders. Comparing the fGCM response to the physiological and the biological validation, we found that while the administration of ACTH led to a significant increase in fGCM concentration in all individuals, only six of eight individuals showed a considerable fGCM response following the biological validation. Our study identified the most appropriate immunoassay for monitoring fGCM concentrations as an indicator of physiological stress in sugar gliders, but also supports recent suggestions that, if possible, both biological and physiological stressors should be used when testing the suitability of an EIA for a species.
- PublicationA burning question: what are the risks and benefits of mammalian torpor during and after fires?(Oxford University Press, 2018)
; ; ; ;Cooper, Christine EAlthough wildfires are increasing globally, available information on how mammals respond behaviourally and physiologically to fires is scant. Despite a large number of ecological studies, often examining animal diversity and abundance before and after fires, the reasons as to why some species perform better than others remain obscure. We examine how especially small mammals, which generally have high rates of energy expenditure and food requirements, deal with fires and post-fire conditions. We evaluate whether mammalian torpor, characterised by substantial reductions in body temperature, metabolic rate and water loss, plays a functional role in survival of mammals impacted by fires. Importantly, torpor permits small mammals to reduce their activity and foraging, and to survive on limited food. Torpid small mammals (marsupials and bats) can respond to smoke and arouse from torpor, which provides them with the possibility to evade direct exposure to fire, although their response is often slowed when ambient temperature is low. Post-fire conditions increase expression of torpor with a concomitant decrease in activity for free-ranging echidnas and small forest-dwelling marsupials, in response to reduced cover and reduced availability of terrestrial insects. Presence of charcoal and ash increases torpor use by captive small marsupials beyond food restriction alone, likely in anticipation of detrimental post-fire conditions. Interestingly, although volant bats use torpor on every day after fires, they respond by decreasing torpor duration, and increasing activity, perhaps because of the decrease in clutter and increase in foraging opportunities due to an increase in aerial insects. Our summary shows that torpor is an important tool for post-fire survival and, although the physiological and behavioural responses of small mammals to fire are complex, they seem to reflect energetic requirements and mode of foraging. We make recommendations on the conditions during management burns that are least likely to impact hetero-thermic mammals.