Options
Koertner, Gerhard
Loading...
Given Name
Gerhard
Gerhard
Surname
Koertner
UNE Researcher ID
une-id:gkoertne
Email
gkoertne@une.edu.au
Preferred Given Name
Gerhard
School/Department
School of Environmental and Rural Science
86 results
Now showing 1 - 10 of 86
- PublicationNatural Use of Heterothermy by a Small, Tree-Roosting Bat during SummerLittle is known about the use of heterothermy by wild bats during summer, especially for tree-roosting species. Because thermal conditions within tree roosts can fluctuate widely with ambient temperature, which affects thermoregulatory energy expenditure during diurnal roosting, we measured skin temperatures of free-ranging male 'Nyctophilus geoffroyi' (8 g) to quantify the relation between summer torpor use and roost thermal conditions. Bats roosted under bark on the northern (sunny) side of trees and entered torpor every day, usually near sunrise. Bats exhibited two bouts of torpor on most days: the first occurred in the morning, was terminated by partially passive rewarming, and was followed by a period of normothermy during the warmest part of the day; a second torpor bout occurred in the late afternoon, with arousal near sunset. On the warmest days, bats had only a single, short morning bout. On the coolest days, bats remained torpid throughout the day, and one 2-d bout was observed. Thus, presumably owing to their poorly insulated roosts and the high energetic cost of normothermy at temperatures below 300C, the extent and timing of heterothermy was closely related to the cycle of diurnal temperatures. Our study indicates that torpor use is important for energy maintenance during summer diurnal roosting of 'N. geoffroyi' and likely of other small, tree-roosting bats.
- PublicationRoost use and thermoregulation by female Australian long-eared bats (Nyctophilus geoffroyi and N. gouldi) during pregnancy and lactationSmall insectivorous bats commonly use torpor while day-roosting, even in summer. However, reproductive female bats are believed to benefit from avoiding torpor because a constant, elevated body temperature maximises the rate of offspring growth, which could increase offspring survival. We used temperature-sensitive radio-transmitters to locate roosts and document the thermal biology of pregnant and lactating females of Nyctophilus geoffroyi (9 g) and N. gouldi (11 g) at a woodland in a cool temperate climate. Unlike males, reproductive female Nyctophilus spp. roosted as small groups (<25) within insulated tree cavities. Roost switching occurred every 3.7 ± 1.5 (N. geoffroyi) or 1.7 ± 0.8 days (N. gouldi), and radio-tagged individuals roosted together and apart on different days. Skin temperature during roosting was most often between 32 and 36°C, and torpor was used infrequently. Male Nyctophilus have been shown in previous studies to use torpor daily during summer. These contrasting torpor patterns likely reflect the warmed cavities occupied by maternity colonies and the thermally unstable shallow crevices occupied by individual males. Our results support the hypothesis that availability of thermally suitable roosts will influence thermoregulatory patterns of reproductive females and hence the growth rates and survival of their offspring. Thus, it is important to conserve woodland habitat with trees in a range of decay stages to provide opportunities for selection and movement among roost trees by reproductive female bats.
- PublicationCanine rabies in Australia: Modelling spread through the landscape(Australasian Society for Infectious Diseases, 2014)
;Sparkes, Jessica; ; ; Introduction: Canine rabies, a fatal viral zoonosis, is now less than 300 kilometres from Indonesian archipelago. To respond to this imminent threat, we need to model how rabies will spread through Australian ecosystems, to develop effective rabies management plans. This will improve our chances of minimising reaction times and containing outbreaks. Aims: To quantify contact rates, abundance, population turnover and dog bite frequency, in order to inform models of canine rabies spread. This is essential for identifying critical control points. - PublicationRest-Phase Thermoregulation In Free-Ranging White-Backed MousebirdsIn White-backed Mousebirds ('Colius colius'), clustering is an important component of rest- phase thermoregulation, particularly at low air temperature. We tested predictions concerning thermoregulation under natural conditions by recording rest-phase body temperature in a flock of free-ranging White-backed Mousebirds in an arid habitat during winter in the Karoo, South Africa. We found that the mouse- birds' restphase body temperature was relatively labile, but was generally maintained above 32°C, despite air temperatures as low as -3.4°C. Patterns of rest-phase body temperature were highly synchronized among individuals within the cluster. The mousebirds showed no evidence of torpor under natural conditions; a shallow departure from normothermy, during which body temperature was reduced to 29-33°C, was observed on only one occasion. The observed patterns of thermoregulation supported our predictions, and confirm that thermoregulation in clustering White-backed Mousebirds in the wild is significantly different
- PublicationDog and Cat Interactions in a Remote Aboriginal Community(MDPI AG, 2018)
; ; ; ; Australian remote Aboriginal communities commonly have large, free-roaming dog populations and relatively small cat populations. However, cats are becoming increasingly popular pets in these communities and it is essential to determine their potential impacts on wildlife to inform animal management practices. In a small island community, this study provided baseline population demographics and investigated dog and cat roaming behaviours and interspecific interactions. The dog population, estimated at 343 dogs, showed active periods at dawn and dusk. The cat population had doubled in 6 months to approximately 83 cats. Cats were observed roaming mainly from dawn until dusk, possibly avoiding periods when dogs were most active. The majority of cats were observed nonroaming. Three cats, however, were captured roaming during the night when all flightless wildlife were observed on our camera traps, suggesting potential impact on local wildlife through their hunting activities. These baseline data provide evidence on which to base management programs that include cats and their impacts on native wildlife. Further research using the multiple methods piloted in this study are warranted to monitor dog and cat populations and their interactions in this island community. - PublicationSnoozing through the storm: torpor use during a natural disaster(Nature Publishing Group, 2015)
; ;Rojas, A Daniella; Although storms provide an extreme environmental challenge to organisms and are predicted to increase in frequency and intensity due to climate change, there are no quantitative observations on the behaviour and physiology of animals during natural disasters. We provide the first data on activity and thermal biology of a free-ranging, arboreal mammal during a storm with heavy rain and category 1 cyclone wind speeds. We studied a population of sugar gliders ('Petaurus breviceps'), a species vulnerable to bad weather due to their small body size and mode of locomotion, in a subtropical habitat during spring when storms are common. Although torpor is generally rare in this species, sugar gliders remained inactive or reduced foraging times during the storm and further minimized energy demands by entering deep torpor. All animals survived the storm and reverted to normal foraging activity during the following night(s). It thus appears that heterothermic mammals have a crucial adaptive advantage over homeothermic species as they can outlast challenging weather events, such as storms and floods, by reducing metabolism and thus energetic needs. - PublicationPhysiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrateThe recent observation that torpor plays a key role in post-fire survival has been mainly attributed to the reduced food resources after fires. However, some of these adjustments can be facilitated or amplified by environmental changes associated with fires, such as the presence of a charcoal-ash substrate. In a previous experiment on a small terrestrial mammal the presence of charcoal and ash linked to food restriction intensified torpor use. However, whether fire cues also act as a trigger of torpor use when food is available and whether they affect other species including arboreal mammals remains elusive. To evaluate whether smoke, charcoal and ash can act as proximate triggers for an impending period of food shortage requiring torpor for mammals, we conducted an experiment on captive sugar gliders (Petaurus breviceps), a small, arboreal marsupial, housed in outside aviaries under different food regimes and natural ambient conditions. When food was available, fire simulation via exposure to smoke and charcoal-ash substrate caused a significant earlier start of activity and a significant decrease in resting body temperature. In contrast, only when food was withheld, did smoke and charcoal-ash exposure significantly enhance torpor depth and duration. Thus, our study not only provides evidence that fire simulation does affect arboreal and terrestrial species similarly, but also suggests that smoke and ash were presumably selected as cues for torpor induction because they indicate an impending lack of food.
- PublicationMeasuring subcutaneous temperature and differential rates of rewarming from hibernation and daily torpor in two species of batsProlonged and remote measurement of body temperature (Tb) in undisturbed small hibernators was not possible in the past because of technological limitations. Although passive integrated transponders (PITs) have been used previously to measure subcutaneous temperature (Tsub) during daily torpor in a small marsupial, no study has attempted to use these devices at Tbs below 10 °C. Therefore, we investigated whether subcutaneous interscapular PITs can be used as a viable tool for measuring Tb in a small hibernating bat ('Nyctophilus gouldi; Ng') and compared it with measurements of Tb during daily torpor in a heterothermic bat ('Syconycteris australis; Sa'). The precision of transponders was investigated as a function of ambient temperature (Ta) and remote Tsub readings enabled us to quantify Tsub-Tb differentials during steady-state torpor and arousal. Transponders functioned well outside the manufacturer's recommended range, down to ~ 5 °C. At rest, Tsub and rectal Tb (Trec) were strongly correlated for both bat species ('Ng' r² = 0.88; 'Sa' r² = 0.95) and this was also true for 'N. gouldi' in steady-state torpor (r² = 0.93). During induced rewarming Tsub increased faster than Trec in both species. Our results demonstrate that transponders can be used to provide accurate remote measurement of Tb in two species of bats during different physiological states, both during steady-state conditions and throughout dynamic phases such as rewarming from torpor. We show that, at least during rewarming, regional heterothermy common to larger hibernators and other hibernating bats is also present in bats capable of daily torpor.
- PublicationTorpor in free-ranging antechinus: does it increase fitness?Antechinus are small, insectivorous, heterothermic marsupial mammals that use torpor from late summer to early winter and reproduce once a year in late winter/early spring. Males die after mating, most females produce only a single litter, but some survive a second winter and produce another litter. As it is not known how these females manage to survive the second winter after the energetically demanding reproductive period and then reproduce a second time, we aimed to provide the first data on thermal biology of free-ranging antechinus by using temperature telemetry. Male 'Antechinus stuartii' and 'Antechinus flavipes' rarely entered torpor in autumn/early winter in the wild, expressing only shallow bouts of <2 h. Female 'A. stuartii' used torpor extensively, employing bouts up to 16.7 h with body temperatures as low as 17.8 °C. Interestingly, although first and second year females used similar torpor patterns, torpor occurrence was almost twofold in second year (93 % of days) than first year females (49 %), and the proportion of the overall monitoring period animals spent torpid was 3.2-fold longer in the former with a corresponding shorter activity period. Our study suggests that intensive use of torpor is crucial for second year females for autumn and winter survival and production of a second litter. We provide the first evidence of an age-related pattern in daily torpor expression in free-ranging mammals and show that torpor use is a complex process that is affected not only by the current energy availability and thermal conditions but also by the reproductive history and age of individuals.
- PublicationEffects of Sex and Reproductive State on Interactions between Free-Roaming Domestic Dogs(Public Library of Science, 2014)
;Sparkes, Jessica; ; ; Free-roaming dogs ('Canis familiaris') are common worldwide, often maintaining diseases of domestic pets and wildlife. Management of these dogs is difficult and often involves capture, treatment, neutering and release. Information on the effects of sex and reproductive state on intraspecific contacts and disease transmission is currently lacking, but is vital to improving strategic management of their populations. We assessed the effects of sex and reproductive state on short-term activity patterns and contact rates of free-roaming dogs living in an Australian Indigenous community. Population, social group sizes and rates of contact were estimated from structured observations along walked transects. Simultaneously, GPS telemetry collars were used to track dogs' movements and to quantify the frequency of contacts between individual animals. We estimated that the community's dog population was 326±52, with only 9.8±2.5% confined to a house yard. Short-term activity ranges of dogs varied from 9.2 to 133.7 ha, with males ranging over significantly larger areas than females. Contacts between two or more dogs occurred frequently, with entire females and neutered males accumulating significantly more contacts than spayed females or entire males. This indicates that sex and reproductive status are potentially important to epidemiology, but the effect of these differential contact rates on disease transmission requires further investigation. The observed combination of unrestrained dogs and high contact rates suggest that contagious disease would likely spread rapidly through the population. Pro-active management of dog populations and targeted education programs could help reduce the risks associated with disease spread.