Options
Lees, Angela Maree
- PublicationThe influence of heat load on Merino sheep. 1. Growth, performance, behaviour and climate
Context. Annually, millions of sheep are exported from Australia to the Middle East, typically during the southern hemisphere winter to the northern hemisphere summer. During these voyages, sheep can be exposed to relatively rapid changes in ambient conditions within a short period of time (≤29 days); therefore, excessive heat load concerns can arise.
Aims. The aim of this study was to define the responses of sheep to incremental heat load under simulated live export conditions. The study herein describes (1) the heat load imposed, and (2) the effect of this heat load on the growth, performance and behavioural responses of sheep during periods of incremental heat load.
Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were included in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral and (2) hot (HOT). Ambient temperature (°C) and relative humidity (%) for the HOT treatment were modelled from live export voyages from Australia to the Middle East in July. Climatic conditions within the climate control chambers were recorded at 10-min intervals, then used to calculate a temperature humidity index. Sheep posture, rumination, eating, drinking and demeanour (calm, agitated or depressed) were observed four times daily at 3-h intervals between 0800 hours and 1700 hours. Feed intake was recorded daily and water intake was measured using an automated meter. Sheep were weighed on Day 0 and then at 7-day intervals. Sheep were weighed at slaughter and carcass weights were obtained, these data were used to determine carcass dressing percentage. Data were analysed using a repeated measures model, with a compound symmetry covariance structure.
Key results. Climatic conditions in the HOT treatment increased incrementally between Day 1 (temperature humidity index ≥19) and Day 29 (temperature humidity index ≤34.7). Behaviour, feed intake, average daily gain (g/day), carcass weight (kg) and dressing percentage were not influenced by treatment (P > 0.05). Sheep in the HOT treatment group showed a 137% increase in water intake (P < 0.01) and on average consumed 2.15 L/sheep.day, whereas the thermoneutral group consumed 1.67 L/sheep.day.
Conclusions. These results suggest that these sheep were capable of maintaining feed intake and growth despite exposure to heat load, albeit with a 137% increase in water intake.
Implications. These results highlight the resilience of the Australian Merino genotype, as these sheep were capable of maintaining feed intake and growth during exposure to heat load. As the climatic conditions in this study were modelled based on typical live export vessel conditions, these results may suggest that the climatic conditions experienced by sheep during voyages may not be as critical as previously thought.
- PublicationThe influence of heat load on Merino sheep. 3. Cytokine and biochemistry profiles(CSIRO Publishing, 2020)
; ;Wijffels, G ;McCulloch, R ;Stockwell, S ;Owen, H ;Sullivan, M L ;Olm, J C W ;Cawdell-Smith, A. JGaughan, J BContext. Approximately 2 million sheep are exported from Australia on live export voyages annually. As voyages travel from a southern hemisphere winter to a northern hemisphere summer, production and welfare issues associated with excessive heat load may arise.
Aims. The aim of this study was to evaluate the responses of sheep to incremental heat load under simulated live export conditions, specifically the influence of heat load on the metabolic and inflammatory status of sheep.
Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were used in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral, and (2) hot. Sheep in the hot treatment were exposed to heat load simulated from live export voyages from Australia to the Middle East. Blood samples were collected from all sheep (n = 144) on Day 1, then at 7-day intervals (n = 5) for the duration of each 29-day period. Blood samples were analysed to determine the cytokine, biochemistry and haematology (data not presented here) profiles. Cytokine and biochemical profiles were analysed using a repeated measures model assuming a compound symmetry covariance. The model fitted included terms for cohort and treatment (hot, thermoneutral), and a term for sample collection day (day) and a treatment × day interaction. The subject factor corresponded to the cohort × treatment combinations.
Key results. There were no consistent trends in plasma cytokine and biochemical profiles. Bicarbonate was the only parameter that was influenced by cohort (P = 0.0035), treatment (P = 0.0025), collection (P = 0.0001) and treatment × collection (P = 0.0025). Furthermore, interleukin-6 and glutamate dehydrogenase were the only parameters that were not influenced by cohort (P > 0.295), treatment (P = 0.2567), collection (P > 0.06) or treatment × collection (P = 0.34).
Conclusions. Overall, these data highlight that the metabolic and inflammatory status of sheep exposed to incremental heat load, during a simulated live export voyage from a southern hemisphere winter to a northern hemisphere summer, were not markedly altered.
Implications. These results provide a preliminary evaluation of the inflammatory and metabolic status of sheep on arrival in the Middle East. - PublicationHeat load increases the risk of clinical mastitis in dairy cattle(Elsevier Inc, 2020-09)
;Vitali, A ;Felici, A; ;Giacinti, G ;Maresca, C ;Bernabucci, U ;Gaughan, J B ;Nardone, ALacetera, NThe study was aimed at assessing heat load-related risk of clinical mastitis (CM) in dairy cows. Records of CM for the years 2014 and 2015 were obtained from a large conventional dairy farm milking about 1,200 Holstein cows in central Italy. A case of CM was defined by the presence of clinical signs and veterinary confirmation. Quarter milk samples were collected and bacteriological investigated for each CM. Etiological agents were identified and classified as environmental or contagious pathogens. Hourly weather data from the nearest weather station were used to calculate heat load index (HLI). Upper and lower thresholds of HLI, at which the animal accumulates or dissipates heat, were settled and used to measure heat load balance through the accumulated heat load (AHL) model. Zero and positive values of AHL indicate periods of thermo-neutral and heat accumulation, respectively. Each case of CM was associated with HLI-AHL values recorded 5 d before the event. The risk of CM was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate the odds ratio and 95% confidence intervals of CM recorded in thermo-neutral (AHL = 0) or heat load (AHL > 0) days, pooled or stratified for pathogen type (environmental or contagious). Classes of AHL as low (<6.5), medium (6.6-34.9), and high (>35) were included in the model. Other variables included in the model were milk yield as liters (<20, 20-30, and >30), days in milk (<60, 60-150, and >150), and parity (1, 2-3, and >3). A total of 1,086 CM cases were identified from 677 cows. Escherichia coli, Streptococcus spp., and Streptococcus uberis were the environmental pathogens isolated with the highest frequency; Staphylococcus aureus prevailed within contagious species. The analysis of pooled data indicated a significant effect of heat load on the occurrence of CM in the contagious pathogen stratum. Higher milk yield, middle and late stage of lactation, and older parity increased the risk of CM under heat load conditions. However, the association between pathogen type and these factors was not clear because the model provided significant odds ratios within all pathogen categories. The present study provided the first evidence of an association between HLI and CM in dairy cattle and suggested the ability of the AHL model to assess the risk of mastitis associated with heat load.
- PublicationThe influence of heat load on Merino sheep. 2. Body temperature, wool surface temperature and respiratory dynamics
Context. Australia exports ~2 million sheep annually. On these voyages, sheep can be exposed to rapidly changing ambient conditions within a short time, and sheep may be exposed to periods of excessive heat load.
Aims. The aim of this study was to define the responses of sheep exposed to incremental heat load under simulated live export conditions. The study herein describes the influence of heat load on wool surface temperature, body temperature (rumen temperature (TRUM), °C; and rectal temperature (TREC), °C) and respiratory dynamics (respiration rate, breaths/min; and panting score (PS)) of sheep under live export conditions. In addition, the relationship between body temperature and respiratory dynamics was investigated.
Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were used in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral (TN; ambient temperature was maintained between 18°C and 20°C), and (2) hot (HOT; ambient temperature minimum and maximum were 22.5°C and 38.5°C respectively). Sheep in the HOT treatment were exposed to heat load simulated from live export voyages from Australia to the Middle East. Respiration rate, PS and wool surface temperature (°C) data were collected four times daily, at 3-h intervals between 0800 hours and 1700 hours. Rectal temperatures were collected on five occasions at 7-day intervals. These data were evaluated using a repeated measures model, assuming a compound symmetry covariance structure. Individual TRUM were obtained via rumen boluses at 10-min intervals between Days 23 and 29 of Cohort 2. Individual TRUM data were collated and converted to an hourly mean TRUM for each sheep, these data were then used to determine the hourly mean TRUM for TN and HOT, then analysed using a first order autoregressive repeated measures model. Additionally, the relationship between respiratory dynamics and TRUM were investigated using a Pearson’s correlation coefficient, a partial correlation coefficient and a multivariate analysis of variance.
Key results. The respiration rate of the HOT sheep (140 ± 3.55 breaths/min) was greater (P < 0.01) than that of the TN sheep (75 ± 3.55 breaths/min). Similarly, the PS of the HOT (1.5 ± 0.02) sheep was greater (P = 0.009) compared with the TN sheep (1.2 ± 0.02). Wool surface temperatures and TREC were greater (P < 0.05) for the HOT sheep than for the TN sheep. There were treatment (P < 0.0001), hour (P < 0.0001), day (P = 0.038) and treatment · hour (P < 0.0001) effects on the TRUM of TN and HOT sheep.
Conclusions. The climatic conditions imposed within the HOT treatment were sufficient to disrupt the thermal equilibrium of these sheep, resulting in increased respiration rate, PS, TREC and TRUM.
Implications. These results suggest that the sheep were unable to completely compensate for the imposed heat load via respiration, thus resulting in an increase in TREC and TRUM. - PublicationThe Influence of Temperament on Body Temperature Response to Handling in Angus CattlePrevious studies have indicated that cattle with more excitable temperaments exhibit an increased stress response. The objective of this study was to investigate the relationship between temperament traits, handling, and stress-induced hyperthermia (SIH) in beef cattle. Rectal temperatures (TREC, °C) of 60 purebred Angus cattle (30 heifers, 30 steers; 235.2 ± 5.11 kg) were recorded at 20 s intervals from 30 min prior to handling until two hours post handling. All cattle were exposed to a standardized handling procedure consisting of (i) being restrained in a weighing box for 30 s; (ii) being held within the crush for 30 s; and then (iii) being restrained in a head bail for 60 s. Cattle temperaments were evaluated via three traits: (1) agitometer score (AG); (2) crush score (CS); and (3) flight speed (FS) during the handling procedure. Agitometer scores and FS measures were used to describe an AG category (AGCAT) and an FS category (FSCAT) that were used to classify animals into three temperament categories: 1, calm; 2, intermediate; and 3, temperamental. Pearson’s correlation coefficients were used to evaluate the associations between (i) AG, CS, FS, and TREC 30 min prior to entry into the weighing box (T-30) and then at 1 min intervals between time of entry into the weighing box (T0) until 10 min post-weighing (T10); and (ii) the relationship between AG, CS, and FS. The relationship between TREC and temperament traits over the 2.5 h were modeled by using a first-order autoregressive repeated measures model. Flight speed had strong to moderate associations with TREC at T-30 (r ≥ 0.37; p ≤ 0.006) and between T0 and T10 (r ≥ 0.36; p ≤ 0.01). There were moderate associations amongst TREC between T0 and T10 and CS (r ≥ 0.31; p ≤ 0.01). A weak relationship existed with CS (r = 0.16; p = 0.16). There were no associations between AG and TREC at T-30 (r ≥ −0.15; p = 0.84) or between T0 and T10 (r ≤ 0.04; p ≥ 0.4). Rectal temperature, irrespective of sex and temperament traits, was influenced by time (p < 0.0001), and maximum TREC (39.3 ± 0.04 °C) occurred between 4 and 5.7 min after entry into the weighing box. In addition, CS (p = 0.007) influenced TREC in these cattle. There were also time × temperament trait × sex interactions with the CS (p = 0.0003) and FSCAT (p = 0.043) categories; however, time × temperament trait interactions were not statistically significant. Results from this study suggest that cattle with excitable temperaments, as evaluated by FS and CS, have a greater increase in TREC. In addition, these results suggest that a relationship exists between basal TREC and FS and CS. Together, these results highlight that temperament, as assessed by FS and CS, influences both basal TREC and the peak temperature recorded following handling but does not influence the magnitude of change in TREC post handling.
- PublicationA novel protocol to measure startle magnitude in sheepTemperament is a trait of interest as it impacts ease of handling, production and reactivity to stressful situations. Excessive behavioural reactivity, as an aspect of temperament, may lead to reduced welfare and stockperson safety. Current tests of behavioural reactivity involve isolating the subject and it can be difficult to differentiate between behavioural responses. We therefore aimed to develop a startle test in sheep which quantified variability in behavioural reactivity whilst addressing the effects of social isolation. The startle response is a consistent universal reaction to sudden and intense stimulation, however, magnitude of startle can be highly variable and may be modulated by affective state. In this study, 60 ewes were allocated into three social groups: isolated; surrounded by six life-sized pictures of sheep or; three conspecifics penned on two sides (total six). Sheep were tested over two days in sets of 10 per treatment. Sheep were confined to a 2.1 m × 1.2 m area, with a bowl of feed at one end, for four minutes (min). Approximately 15 s after the sheep commenced eating, a sudden one sec blast of compressed air was delivered to the face. Tri-axial accelerometers, visual scoring, agitometer scores and body temperature were used to assess the magnitude of the startle response and the pre- and post-startle fear behaviours. In the 15 s pre-startle, isolated sheep spent less time eating (p < 0.001; mean percentage of time: 37.4% vs 71.2% and 83.3%) and were 2-4 times longer in a vigilant state (p < 0.001; mean percentage of time: 38.9% vs 18.2% and 11.3%) than those with pictures and conspecifics respectively. Sheep in the conspecific treatment were 3-4 times faster to return to eating after startle than those in the isolated and picture treatments and there was a tendency for them to spend more time eating (p = 0.09) and less time vigilant (p = 0.09) post-startle. For each measure of startle magnitude (startle force, startle duration or retreat distance) the effect of treatment was not statistically important (p > 0.22), however each measure was positively correlated to time spent vigilant post-startle and there were significant increases in time to return to eating for every one unit increase in each of the startle magnitude measures independent of social treatment. The use of conspecifics did not provide social facilitation or buffering of the startle response. This shows promise as a behavioural reactivity test which can utilise conspecifics to reduce any potential negative effects of social isolation during testing.