Now showing 1 - 10 of 25
  • Publication
    Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef
    (MDPI AG, 2021-02-10) ; ;
    Bowler, D
    ;
    Gonzalez-Rivas, P A
    ;
    Tarr, G
    ;
    Warner, R D
    ;
    Dunshea, F R
    ;
    ;
    The aim of this study was to evaluate the effect of carcass traits, lairage time and weather conditions during lairage and abattoir factors that impact the incidence of dark cutting in 142,228 grain-fed carcasses, as defined by Meat Standards Australia (MSA) guidelines. This study was conducted over a 12-month period analysing data from cattle that were supplied from seven feedlots and processed at three abattoirs. Abattoir data indicated that the average incidence of dark cutting within the study was 2.8%. Increased wind speeds (WSs) and rain during lairage at the abattoir was associated with an increased risk of dark cutting, whereas variation in ambient temperature and/or relative humidity did not influence dark cutting. Heavier carcasses with whiter fat, larger hump heights, more rib fat, higher marble scores and lower ossification had lower incidences of dark cutting. The factors abattoir, time in lairage, time to grading and grader within Abattoir had significant effects on the incidence of dark cutting. The results from this study suggest that reducing the time in lairage and increasing the time between slaughter and grading are the two major ways to reduce dark cutting in MSA carcasses.
  • Publication
    A panting score index for sheep
    (Springer, 2019) ;
    Sullivan, M L
    ;
    Olm, J C W
    ;
    Cawdell-Smith, A J
    ;
    Gaughan, J B

    When exposed to hot conditions, heat dissipation via an increase in respiration rate (RR) is an important thermoregulatory mechanism for sheep. However, evaluating RR under field conditions is difficult. In cattle, a viable alternative has been to assess panting score (PS)" therefore, the objective of this study was to evaluate the relationship between RR and PS to determine if a PS index can be used to evaluate heat load in sheep. One hundred and forty-four Merino wethers (44.02 ± 0.32 kg) were used within a climate-controlled study. The study was replicated twice over 29 days, where each replicate consisted of two treatments: (1) thermoneutral (TN) and (2) hot (HOT). Ambient temperature (TA) and relative humidity (RH) were maintained between 18 and 20 °C and 60 and 70% respectively for the TN treatment. For the HOT treatment, heat load increased steadily over the 29 days. Minimum TA was 22.5 °C and maximum was 38.5 °C, while RH decreased (60 to 30%) as TA increased in the HOT treatment. A comprehensive PS classification was developed by enhancing the current sheep PS index and aligning the descriptors with the current PS index utilized in beef cattle studies. Respiration rate and PS were obtained for each animal at 3-h intervals between 0800 h and 1700 h daily. These data were used to determine the mean RR for each PS, across the study and within the TN and HOT treatments. The relationship between PS and RR was evaluated using a Pearson's correlation coefficient. Data were also analyzed using a general linear model to determine the impact of PS, posture and animal identification (animal ID) on RR within each PS. Unsurprisingly, RR increased as PS increased, and PS, 0 and RR, 2.5 were 30.7 ± 0.59 and 246.8 ± 12.20 bpm respectively. There was a strong relationship between RR and PS (r = 0.71" P < 0.0001). As RR increased, sheep were more likely to be observed standing (P < 0.001). Mean PS of sheep within the HOT treatment (1.49 ± 0.02) were greater (P = 0.0085) when compared to the TN (1.17 ± 0.02) sheep. Individual animal ID accounted for approximately 7–37% of the variation observed for RR across PS, indicating that animal ID and climatic conditions were influencing RR and PS. These results suggest that the comprehensive PS index described here can be used as a visual appraisal of the heat load status of sheep.

  • Publication
    The impact of weather on the incidence of dark cutting in Australian feedlot cattle
    (Springer, 2022-05) ; ;
    Tarr, G
    ;
    Warner, R
    ;
    Dunshea, F
    ;
    ;

    This study conducted a retrospective analysis of historical Meat Standard Australia (MSA) carcass data in combination with Bureau of Meteorology (BOM) weather data, to evaluate the relationship between climatic conditions prior to feedlot departure on the incidence of dark cutting grain-fed beef. Data records for 2,795,754 carcasses from 17 commercial feedlots over a 6-year period were evaluated within this study. Carcasses were consigned to 16 abattoirs. Weather data from BOM were recorded at 30-min intervals and were obtained from weather stations with the closest proximity to each feedlot. These data were used to calculate the Temperature Humidity Index (THI). Climatic data were amalgamated into daily observations and a series of predictors including ambient temperature (TA, °C), relative humidity (RH, %), wind speed (WS, m/s), rainfall (mm) and THI. In addition, lag interactions from 24 h out to 28 days prior to exiting the feedlot were generated. The incidence of dark cutting was determined as percentage per cohort with an ultimate pH > 5.7. Data were analysed using three models: model 1 included feedlot, abattoir, hormone growth promotant status and sex as fixed effects. Model 2 incorporated the fixed effects within model 1 and minimum, maximum and standard deviation (SD) of TA and RH, daily range in TA, average WS and rainfall as random effects. Model 3 incorporated minimum, maximum, range and SD of THI, average WS and rainfall as random effects in addition to the fixed effects of model 1. The incidence of dark cutting within feedlot had a 10.1% range in estimated means with the lowest incidence was observed at feedlot 17 (0%) and highest incidence at feedlot 10 (10.1%). The inclusion of the climatic variables in model 2 and model 3 accounted for an additional 0.1 to 0.2% of the incidence of dark cutting carcasses. Higher maximum TA, RH and THI in the 3 to 28 days prior to consignment were all associated with an increased incidence of dark cutting (P < 0.05), but not in the 48 h preceding consignment (P > 0.05). Low minimum TA and low THI were also associated with an increase the incidence of dark cutting across all lag periods (P < 0.05). Increased variation in THI and TA in the 48 h prior to consignment increased dark cutting (P < 0.05) while increased standard deviation (SD) of temperature and THI range also increased dark cutting in the 14 and 28 day prior to feedlot exit (P < 0.05). Smaller minimum ranges in TA in the 28 days prior to consignment also reduced dark cutting (P < 0.05). Climatic conditions accounted for a further 0.1 to 0.2% of the incidence of dark cutting, whereas animal management factors, feedlot and abattoir were able to account for 21% of dark cutting. These data suggest that climatic conditions appear to have an inherent role in the incidence of dark cutting, albeit a small impact. Regardless, understanding the influence of climatic conditions on dark cutting allows for the implementation of management strategies within the supply chain to further reduce the impact of climatic conditions on grain-fed cattle.

  • Publication
    The influence of heat load on Merino sheep. 1. Growth, performance, behaviour and climate
    (CSIRO Publishing, 2020) ;
    Sullivan, M L
    ;
    Olm, J C W
    ;
    Cawdell-Smith, A J
    ;
    Gaughan, J B

    Context. Annually, millions of sheep are exported from Australia to the Middle East, typically during the southern hemisphere winter to the northern hemisphere summer. During these voyages, sheep can be exposed to relatively rapid changes in ambient conditions within a short period of time (≤29 days); therefore, excessive heat load concerns can arise.

    Aims. The aim of this study was to define the responses of sheep to incremental heat load under simulated live export conditions. The study herein describes (1) the heat load imposed, and (2) the effect of this heat load on the growth, performance and behavioural responses of sheep during periods of incremental heat load.

    Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were included in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral and (2) hot (HOT). Ambient temperature (°C) and relative humidity (%) for the HOT treatment were modelled from live export voyages from Australia to the Middle East in July. Climatic conditions within the climate control chambers were recorded at 10-min intervals, then used to calculate a temperature humidity index. Sheep posture, rumination, eating, drinking and demeanour (calm, agitated or depressed) were observed four times daily at 3-h intervals between 0800 hours and 1700 hours. Feed intake was recorded daily and water intake was measured using an automated meter. Sheep were weighed on Day 0 and then at 7-day intervals. Sheep were weighed at slaughter and carcass weights were obtained, these data were used to determine carcass dressing percentage. Data were analysed using a repeated measures model, with a compound symmetry covariance structure.

    Key results. Climatic conditions in the HOT treatment increased incrementally between Day 1 (temperature humidity index ≥19) and Day 29 (temperature humidity index ≤34.7). Behaviour, feed intake, average daily gain (g/day), carcass weight (kg) and dressing percentage were not influenced by treatment (P > 0.05). Sheep in the HOT treatment group showed a 137% increase in water intake (P < 0.01) and on average consumed 2.15 L/sheep.day, whereas the thermoneutral group consumed 1.67 L/sheep.day.

    Conclusions. These results suggest that these sheep were capable of maintaining feed intake and growth despite exposure to heat load, albeit with a 137% increase in water intake.

    Implications. These results highlight the resilience of the Australian Merino genotype, as these sheep were capable of maintaining feed intake and growth during exposure to heat load. As the climatic conditions in this study were modelled based on typical live export vessel conditions, these results may suggest that the climatic conditions experienced by sheep during voyages may not be as critical as previously thought.

  • Publication
    Influence of acute mild winter conditions on the productivity of feedlot cattle: An Australian perspective
    (Elsevier Ltd, 2024-10)
    Pryor, Pippa J
    ;
    Standfield, Billie
    ;
    ; ;

    The impact of cold stress on feedlot cattle has received limited investigation in temperate climates. However, cold stress has been found to impact cattle welfare and production in temperate climatic conditions, where ambient temperature (TA), precipitation, relative humidity (RH), wind speed (WS) and solar radiation (SR) all influencing apparent temperature. While there are many indices to quantify cold stress in cattle, there are limited indices that directly relate to cattle and account for all the interactions between climatic variables. This makes cold stress difficult to quantify, with on-cattle measures such as core body temperature and shivering difficult metrics to obtain in feedlot cattle. Moreover, individual cattle will react differently to cold conditions based on their production, age, sex, coat characteristics (colour and type), breed and nutrition. While cold stress can be difficult to measure, the production status, behavioural and physiological effects of cold stress have been identified, but generally under what could be considered as extreme cold stress events. Similarly, while mitigation strategies such as shelter, bedding and windbreaks have been investigated, limited information is available surrounding their usefulness in temperate climates. Further research is needed to fully investigate the effects of cold stress and how to mitigate those effects in feedlot cattle under conditions, such as those found in Australia.

  • Publication
    Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock
    (Springer, 2019)
    Rashamol, V P
    ;
    Sejian, V
    ;
    Pragna, P
    ;
    ;
    Bagath, M
    ;
    Krishnan, G
    ;
    Gaughan, J B

    Livestock industries have an important role in ensuring global food security. This review discusses the importance of quantifying the heat stress response of ruminants, with an emphasis on identifying thermo-tolerant breeds. There are numerous heat stress prediction models that have attempted to quantify the response of ruminant livestock to hot climatic conditions. This review highlights the importance of investigating prediction models beyond the temperature-humidity index (THI). Furthermore, this review highlights the importance of incorporating other climatic variables when developing prediction indices to ensure the accurate prediction of heat stress in ruminants. Prediction models, particularly the heat load index (HLI) were developed to overcome the limitations of the THI by incorporating ambient temperature (AT), relative humidity (RH), solar radiation (SR) and wind speed (WS). Furthermore refinements to existing prediction models have been undertaken to account for the interactions between climatic variables and physiological traits of livestock. Specifically, studies have investigated the relationships between coat characteristics, respiration rate (RR), body temperature (BT), sweating rate, vasodilation, body weight (BW), body condition score (BCS), fatness and feed intake with climatic conditions. While advancements in prediction models have been occurring, there has also been substantial advancement in the methodologies used to quantify animal responses to heat stress. The most recent development in this field is the application of radio frequency identification (RFID) technology to record animal behaviour and various physiological responses. Rumen temperature measurements using rumen boluses and skin temperature recording using infrared thermography (IRT) are making inroads to redefine the quantification of the heat stress response of ruminants. Further, this review describes several advanced biotechnological tools that can be used to identify climate resilient breeds of ruminant livestock.

  • Publication
    The influence of shade availability on the effectiveness of the Dairy Heat Load Index (DHLI) to predict lactating cow behavior, physiology, and production traits
    (Springer, 2021) ; ;
    Gaughan, J B

    Numerous climatic indices have been utilized to predict the efect of hot, and cold, climatic conditions on animal production and welfare. To date, the dairy industry has relied extensively on the Temperature Humidity Index (THI) to predict adverse climatic conditions" however, neither solar radiation nor air movement is accounted for in the THI equation. The Dairy Heat Load Index (DHLI) was initially developed as an alternative climate index. In its current format, the DHLI does not account for the efects of heat load mitigation strategies, such as shade, which decreases the negative efects of hot climatic conditions on lactating cows. Therefore, this experiment aimed to determine the efectiveness of the DHLI as a predictor of heat load responses in both shaded and unshaded cows, as compared with the THI. Forty lactating Holstein Friesian (n=40) cows were selected and paired based on live weight, milk yield, and days in milk. One cow from each pair was randomly allocated to one of two treatments: shaded (n=20) or unshaded (n=20). Cows were given 7 days to acclimate prior to the commencement of data collection. After 28 days, cows were transitioned into the alternate treatment in a crossover design and given 7 days to acclimate prior to data collection. Behavioral observations (0800, 1200, 1400, and 1800 h daily), daily milk yield (kg), milk composition (various days), and vaginal temperature (TVAG, °C" 5 pairs/week, over a 4-week rotation) were recorded. Overall, data from this experiment indicated that the DHLI was a better predictor of standing and feeding behaviors in unshaded cows and drinking behaviors in shaded cows. Conversely, the THI was a better predictor of standing behavior and shade usage in shaded cows. Furthermore, the THI was a better predictor of mean panting score (MPS) in shaded cows, whereas the DHLI performed better in unshaded cows. Additionally the DHLI was a better predictor of TVAG in these cows. Finally, when evaluating the 7-day average of each climatic index, the DHLI was a better predictor of change in milk yield. Incorporation of additional animal and management factors is required if the DHLI is to become an efective heat load management tool.

  • Publication
    A news update from the students and new professionals group
    (Springer, 2022) ;
    Vecellio, Daniel J
    ;
    Dzyuban, Yuliya

    We would also like to take this opportunity to formally introduce ourselves as the 2020 to 2023 SNP executive committee: Daniel Vecellio, Yuliya Dzyuban and Angela Lees, as your SNP secretary, communications director and chair. On behalf of the SNP, we would like to take this opportunity to sincerely thank Hamed Mehdipoor for leading the SNP group throughout the previous triennium (2017–2020).

  • Publication
    Feedlot Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef
    (MDPI AG, 2022-08-05) ; ;
    Tarr, Garth
    ;
    Dunshea, Frank R
    ;
    Bowler, Des
    ;
    ;
    Warner, Robyn D
    ;

    It has been well-established that dark cutting (DC) is a multifactorial issue that is associated with numerous animal and management factors. However, there is limited understanding of the feedlot-based factors that contribute to the influence of DC. The aim of this study was to evaluate the effect of climate, animal, and feedlot factors on the incidence of pH non-compliance in Australian grain-fed cattle. For this study, feedlot and abattoir records from 142,228 individual cattle over a 1-year period were investigated. These data incorporated records from seven feedlots that consigned cattle to three abattoirs. The average incidence of DC in these carcasses was 2.8%. The production factors that were associated with increased risk of DC included feedlot, sex, hormone growth promotants (HGP), cattle health, and days on feed (DOF). Additionally, DC also increased by reduced solar radiation (SR, W/m2 ), lower wind speeds (WS, m/s), increased ambient temperature (TA, ◦C), higher rainfall, a higher average temperature–humidity index (THI), and increased duration of time above heat-load-index threshold of 86 (HLI ≥ 86) during the 7 days prior to feedlot departure. This study identified the feedlot factors that increase the risk of DC from a feedlot-management perspective.

  • Publication
    The influence of heat load on Merino sheep. 3. Cytokine and biochemistry profiles
    (CSIRO Publishing, 2020) ;
    Wijffels, G
    ;
    McCulloch, R
    ;
    Stockwell, S
    ;
    Owen, H
    ;
    Sullivan, M L
    ;
    Olm, J C W
    ;
    Cawdell-Smith, A. J
    ;
    Gaughan, J B

    Context. Approximately 2 million sheep are exported from Australia on live export voyages annually. As voyages travel from a southern hemisphere winter to a northern hemisphere summer, production and welfare issues associated with excessive heat load may arise.
    Aims. The aim of this study was to evaluate the responses of sheep to incremental heat load under simulated live export conditions, specifically the influence of heat load on the metabolic and inflammatory status of sheep.

    Methods. A total of 144 Merino wethers (44.02 ± 0.32 kg) were used in a 29-day climate controlled study using two cohorts of 72 sheep (n = 2), exposed to two treatments: (1) thermoneutral, and (2) hot. Sheep in the hot treatment were exposed to heat load simulated from live export voyages from Australia to the Middle East. Blood samples were collected from all sheep (n = 144) on Day 1, then at 7-day intervals (n = 5) for the duration of each 29-day period. Blood samples were analysed to determine the cytokine, biochemistry and haematology (data not presented here) profiles. Cytokine and biochemical profiles were analysed using a repeated measures model assuming a compound symmetry covariance. The model fitted included terms for cohort and treatment (hot, thermoneutral), and a term for sample collection day (day) and a treatment × day interaction. The subject factor corresponded to the cohort × treatment combinations.

    Key results. There were no consistent trends in plasma cytokine and biochemical profiles. Bicarbonate was the only parameter that was influenced by cohort (P = 0.0035), treatment (P = 0.0025), collection (P = 0.0001) and treatment × collection (P = 0.0025). Furthermore, interleukin-6 and glutamate dehydrogenase were the only parameters that were not influenced by cohort (P > 0.295), treatment (P = 0.2567), collection (P > 0.06) or treatment × collection (P = 0.34).

    Conclusions. Overall, these data highlight that the metabolic and inflammatory status of sheep exposed to incremental heat load, during a simulated live export voyage from a southern hemisphere winter to a northern hemisphere summer, were not markedly altered.

    Implications. These results provide a preliminary evaluation of the inflammatory and metabolic status of sheep on arrival in the Middle East.