Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Publication

Detecting Banana Plantations in the Wet Tropics, Australia, Using Aerial Photography and U-Net

2020-03-16, Clark, Andrew, McKechnie, Joel

Bananas are the world's most popular fruit and an important staple food source. Recent outbreaks of Panama TR4 disease are threatening the global banana industry, which is worth an estimated $8 billion. Current methods to map land uses are time- and resource-intensive and result in delays in the timely release of data. We have used existing land use mapping to train a U-Net neural network to detect banana plantations in the Wet Tropics of Queensland, Australia, using high-resolution aerial photography. Accuracy assessments, based on a stratified random sample of points, revealed the classification achieves a user’s accuracy of 98% and a producer's accuracy of 96%. This is more accurate compared to existing (manual) methods, which achieved a user’s and producer's accuracy of 86% and 92% respectively. Using a neural network is substantially more efficient than manual methods and can inform a more rapid respond to existing and new biosecurity threats. The method is robust and repeatable and has potential for mapping other commodities and land uses which is the focus of future work.

No Thumbnail Available
Publication

A Multifaceted Approach to Developing an Australian National Map of Protected Cropping Structures

2023, Clark, Andrew, Shephard, Craig, Robson, Andrew, McKechnie, Joel, Morrison, R Blake, Rankin, Abbie

Abstract: As the global population rises, there is an ever-increasing demand for food, in terms of volume, quality and sustainable production. Protected Cropping Structures (PCS) provide controlled farming environments that support the optimum use of crop inputs for plant growth, faster production cycles, multiple growing seasons per annum and increased yield, while offering greater control of pests, disease and adverse weather. Globally, there has been a rapid increase in the adoption of PCS. However, there remains a concerning knowledge gap in the availability of accurate and up-to-date spatial information that defines the extent (location and area) of PCS. This data is fundamental for providing metrics that inform decision making around forward selling, labour, processing and infrastructure requirements, traceability, biosecurity and natural disaster preparedness and response. This project addresses this need, by developing a national map of PCS for Australia using remotely sensed imagery and deep learning analytics, ancillary data, field validation and industry engagement. The resulting map presents the location and extent of all commercial glasshouses, polyhouses, polytunnels, shadehouses and permanent nets with an area of >0.2 ha. The outcomes of the project revealed deep learning techniques can accurately map PCS with models achieving F-Scores > 0.9 and accelerate the mapping where suitable imagery is available. Location-based tools supported by web mapping applications were critical for the validation of PCS locations and for building industry awareness and engagement. The final national PCS map is publicly available through an online dashboard which summarises the area of PCS structures at a range of scales including state/territory, local government area and individual structure. The outcomes of this project have set a global standard on how this level of mapping can be achieved through a collaborative, multifaceted approach.