Now showing 1 - 4 of 4
  • Publication
    Variation in the strength of allometry drives rates of evolution in primate brain shape
    (The Royal Society Publishing, 2020-07-08) ;
    Allen, K
    ;
    ; ; ;
    Profico, A
    ;
    Castiglione, S
    ;
    Melchionna, M
    ;
    Serio, C
    ;
    Mondanaro, A
    ;
    Raia, P
    ;
    Large brains are a defining feature of primates, as is a clear allometric trend between body mass and brain size. However, important questions on the macroevolution of brain shape in primates remain unanswered. Here we address two: (i), does the relationship between the brain size and its shape follow allometric trends and (ii), is this relationship consistent over evolutionary time? We employ three-dimensional geometric morphometrics and phylogenetic comparative methods to answer these questions, based on a large sample representing 151 species and most primate families. We found two distinct trends regarding the relationship between brain shape and brain size. Hominoidea and Cercopithecinae showed significant evolutionary allometry, whereas no allometric trends were discernible for Strepsirrhini, Colobinae or Platyrrhini. Furthermore, we found that in the taxa characterized by significant allometry, brain shape evolution accelerated, whereas for taxa in which such allometry was absent, the evolution of brain shape decelerated. We conclude that although primates in general are typically described as large-brained, strong allometric effects on brain shape are largely confined to the order's representatives that display more complex behavioural repertoires.
  • Publication
    Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood
    (Nature Publishing Group, 2023) ;
    Profico, Antonio
    ;
    ;
    Allen, Kari
    ;
    ; ;
    Mitchell, Dave Rex
    ;
    Mondanaro, Alessandro
    ;
    Melchionna, Marina
    ;
    Castiglione, Silvia
    ;
    Serio, Carmela
    ;
    Raia, Pasquale

    There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.

  • Publication
    Feeding Biomechanics Influences Craniofacial Morphology at the Subspecies Scale among Australian Pademelons (Macropodidae: Thylogale)
    Interspecific variation in the craniofacial morphology of kangaroos and wallabies is associated with diet and feeding behaviors. Yet, to how fine a taxonomic scale this relationship might exist is unknown. Using a combination of established morphometric analyses and novel finite element approaches, we test the limits of these associations by examining three closely-related pademelon taxa: the red-necked pademelon (Thylogale thetis), and two subspecies of the red-legged pademelon (Thylogale stigmatica stigmatica and Thylogale stigmatica wilcoxi). All three taxa have distinct proportions of graze (grasses) and browse (leaves, stems, and branches of trees and shrubs) in their diets. We identified clear morphological differences in the crania between all three taxa and significant influences of geography and climate on cranial shape. We found significant differences in shape and strain magnitudes along the muzzle and cheek bones of each group that are consistent with the properties of their respective diets. These results suggest that feeding ecology influences craniofacial morphology down to the subspecies scale for at least some kangaroos and wallabies, which mirrors what is known at the macroevolutionary level for these species. This lends further weight to the predictive value of cranial morphology in determining feeding ecology among the Macropodiformes and may be of use in inferring feeding ecology of less accessible species for conservation and management.
  • Publication
    The mechanical properties of bettong and potoroo foods
    (CSIRO Publishing, 2024) ; ;
    Andrew, Damien
    ;
    Mathewson, Ian
    ;
    Weisbecker, Vera
    ;

    Potoroid marsupials (bettongs and potoroos of the family Potoroidae) are considered ecosystem engineers because of the roles they play in maintaining biodiversity. However, severe declines since European arrival have necessitated intense conservation efforts. Vital to these efforts is an understanding of the physical challenges that define their niches. The mechanical properties of their foods, such as toughness and stiffness, represent a physical interface with the environment that can contribute to quantitatively defining their niches. Here, we provide mechanical property data from wild bettong and potoroo foods, such as roots and tubers, fruit, fungi, invertebrates, seeds, and leaves. Toughness ranged from approximately 56.58 J/m2 (fungal sporocarp of Descolea sp.) to 2568.15 J/m2 (tubers of the blue yam, Brunoniella australis). Similarly, stiffness of the wild foods ranged from 1.15 MPa for Descolea sp. to 30.4 MPa for B. australis. However, the mechanical demands of accessing the kernels from within the shells (testae) of sandalwood and quandong (Santalum spp.) seeds far exceed measurements of any foods tested. We also tested some farmed foods, alongside inclusion of data from previous studies. Taken together, these data can also improve selection of comparable foods in designing diets for potoroids, and other species, in captivity.