Options
Ledogar, Justin
- PublicationComputational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods(The Royal Society Publishing, 2018-10-24)
; ; ; ;Gutzler, Benjamin C ;Watson, Winsor HThe biology of the American horseshoe crab, Limulus polyphemus, is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. Limulus polyphemus is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially Sidneyia inexpectans from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of S. inexpectans show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods. Here, we use advanced computational techniques, specifically a unique application of 3D finite-element analysis (FEA), to model the feeding mechanics of L. polyphemus and S. inexpectans: the first such analyses of a modern horseshoe crab and a fossil arthropod. Results show that mechanical performance of the feeding appendages in both arthropods is remarkably similar, suggesting that S. inexpectans had similar shell-crushing capabilities to L. polyphemus This biomechanical solution to processing shelly food therefore has a history extending over 500 Myr, arising soon after the first shell-bearing animals. Arrival of durophagous predators during the early phase of animal evolution undoubtedly fuelled the Cambrian 'arms race' that involved a rapid increase in diversity, disparity and abundance of biomineralized prey species. - PublicationVariation in the strength of allometry drives rates of evolution in primate brain shape(The Royal Society Publishing, 2020-07-08)
; ;Allen, K; ; ; ;Profico, A ;Castiglione, S ;Melchionna, M ;Serio, C ;Mondanaro, A ;Raia, PLarge brains are a defining feature of primates, as is a clear allometric trend between body mass and brain size. However, important questions on the macroevolution of brain shape in primates remain unanswered. Here we address two: (i), does the relationship between the brain size and its shape follow allometric trends and (ii), is this relationship consistent over evolutionary time? We employ three-dimensional geometric morphometrics and phylogenetic comparative methods to answer these questions, based on a large sample representing 151 species and most primate families. We found two distinct trends regarding the relationship between brain shape and brain size. Hominoidea and Cercopithecinae showed significant evolutionary allometry, whereas no allometric trends were discernible for Strepsirrhini, Colobinae or Platyrrhini. Furthermore, we found that in the taxa characterized by significant allometry, brain shape evolution accelerated, whereas for taxa in which such allometry was absent, the evolution of brain shape decelerated. We conclude that although primates in general are typically described as large-brained, strong allometric effects on brain shape are largely confined to the order's representatives that display more complex behavioural repertoires. - PublicationMorphology, Biomechanics and Diet in Anthropoidea (Primates)(2019-03-11)
;Luk, Hiu Ying; ; ;Sherratt, EmmaIn recent years there have been an increasing number of studies investigating the relationship between diet preference, skull shape and biomechanics of primates. Understanding the relationship between morphological and mechanical variations and extrinsic factors, such as diet and feeding behaviour, provides insights into the evolution of our own species. However, most diet-related morphological studies have focused on the mandibles and dentition, while most biomechanical studies have concentrated on species that either feed on mechanically challenging foods (hard-object feeders) or are mechanically challenged during food acquiring (e.g., tree-gouging exudate feeders). These mechanical studies are usually small scale with only a few species and there is a lack more comprehensive comparisons. Studies on the relationship between cranial shape and biomechanical performances in primates are also limited. In the present study, whether cranial morphology and/or mechanical performance reflect dietary preferences were examined in Anthropoidea, which is a clade of primates that includes all the New World and Old World monkeys. It was hypothesised that cranial shape and its mechanical behaviour reflect diet regardless of phylogeny and cranial size.
Three-dimensional geometric morphometrics was used to investigate the relationship between cranial shape and diet. Finite element analysis was used to assess the mechanical performance in the anthropoid crania during premolar, molar, and incisor loadings. Von Mises strain magnitudes and distributions were used to determine the ability to withstand high bite forces. Mechanical advantages were calculated as the ratio of bite force per muscle force. Results showed that diet had very limited influence on cranial morphology. New World monkeys generally exhibited a stronger correlation between diet and cranial shape than Old World monkeys. This suggested that cranial morphology in primates was not the sole result of dietary selection. Variations of strain magnitudes were also found to be mostly insignificant with diet. However, results showed that mechanical advantages were a better predictor of diet preference, especially for species that require higher bite forces during feeding. Hard food feeders were more mechanically efficient at producing high premolar and molar bites compared to other dietary groups. Exudate feeders were also relatively efficient at producing high bite forces at the incisors. While cranial morphology was found to have limited correlation with diet, there was a strong relationship between cranial shape and mechanical advantage. This result indicated that mechanical advantage can be achieved by different combinations of craniofacial features.
- PublicationMechanical evidence that 'Australopithecus sediba' was limited in its ability to eat hard foods(Nature Publishing Group, 2016)
; ;Smith, Amanda L ;Richmond, Brian G ;Wright, Barth W ;Wang, Qian ;Byron, Craig ;Carlson, Kristian J ;de Ruiter, Darryl J ;Berger, Lee R ;Tamvada, Kelli ;Pryor, Leslie C ;Berthaume, Michael A ;Benazzi, Stefano ;Strait, David S ;Weber, Gerhard W ;Spencer, Mark A ;Carlson, Keely B ;McNulty, Kieran P ;Dechow, Paul C ;Grosse, Ian RRoss, Callum F'Australopithecus sediba' has been hypothesized to be a close relative of the genus 'Homo'. Here we show that MH1, the type specimen of 'A. sediba', was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that 'A. sediba' consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of 'Homo' lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus. - PublicationHomo sapiens and Neanderthals share high cerebral cortex integration into adulthood(Nature Publishing Group, 2023)
; ;Profico, Antonio; ;Allen, Kari; ; ;Mitchell, Dave Rex ;Mondanaro, Alessandro ;Melchionna, Marina ;Castiglione, Silvia ;Serio, CarmelaRaia, PasqualeThere is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
- PublicationInternal Bone Architecture in the Zygoma of Human and 'Pan'(John Wiley & Sons, Inc, 2016)
;Pryor McIntosh, Leslie ;Strait, David S; ;Smith, Amanda L ;Ross, Callum ;Wang, Qian ;Opperman, Lynne ADechow, Paul CThe internal and external anatomy of the primate zygoma is central to orofacial function, health, and disease. The importance of variation in its gross morphology across extinct and extant primate forms has been established using finite element analysis, but its internal structure has yet to be explored. In this study, µCT is used to characterize trabecular bone morphometry in two separate regions of the zygoma of humans and 'Pan'. Trabecular anisotropy and orientation are compared with strain orientations observed in trabecular regions of finite element models of four Pan crania. The results of this study show that trabecular bone morphometry, anisotropy, and orientation are highly compatible with strain orientation and magnitude in the finite element models. Trabecular bone in the zygoma is largely orthotropic (with bone orientation differing in three mutually orthogonal directions), with its primary orientation lying in the mediolateral direction. Trabecular bone in the zygomatic region appears to be highly influenced by the local strain environment, and thus may be closely linked to orofacial function. - PublicationThe biomechanics of foraging determines face length among kangaroos and their relatives(The Royal Society Publishing, 2018-06-27)
; ;Sherratt, Emma; Increasing body size is accompanied by facial elongation across a number of mammalian taxa. This trend forms the basis of a proposed evolutionary rule, cranial evolutionary allometry (CREA). However, facial length has also been widely associated with the varying mechanical resistance of foods. Here, we combine geometric morphometrics and computational biomechanical analyses to determine whether evolutionary allometry or feeding ecology have been dominant influences on facial elongation across 16 species of kangaroos and relatives (Macropodiformes). We found no support for an allometric trend. Nor was craniofacial morphology strictly defined by dietary categories, but rather associated with a combination of the mechanical properties of vegetation types and cropping behaviours used to access them. Among species examined here, shorter muzzles coincided with known diets of tough, resistant plant tissues, accessed via active slicing by the anterior dentition. This morphology consistently resulted in increased mechanical efficiency and decreased bone deformation during incisor biting. Longer muzzles, by contrast, aligned with softer foods or feeding behaviours invoking cervical musculature that circumvent the need for hard biting. These findings point to a potential for craniofacial morphology to predict feeding ecology in macropodiforms, which may be useful for species management planning and for inferring palaeoecology. - PublicationFeeding Biomechanics Influences Craniofacial Morphology at the Subspecies Scale among Australian Pademelons (Macropodidae: Thylogale)(Springer New York LLC, 2020-06)
; ;Sherratt, Emma; ; ; Interspecific variation in the craniofacial morphology of kangaroos and wallabies is associated with diet and feeding behaviors. Yet, to how fine a taxonomic scale this relationship might exist is unknown. Using a combination of established morphometric analyses and novel finite element approaches, we test the limits of these associations by examining three closely-related pademelon taxa: the red-necked pademelon (Thylogale thetis), and two subspecies of the red-legged pademelon (Thylogale stigmatica stigmatica and Thylogale stigmatica wilcoxi). All three taxa have distinct proportions of graze (grasses) and browse (leaves, stems, and branches of trees and shrubs) in their diets. We identified clear morphological differences in the crania between all three taxa and significant influences of geography and climate on cranial shape. We found significant differences in shape and strain magnitudes along the muzzle and cheek bones of each group that are consistent with the properties of their respective diets. These results suggest that feeding ecology influences craniofacial morphology down to the subspecies scale for at least some kangaroos and wallabies, which mirrors what is known at the macroevolutionary level for these species. This lends further weight to the predictive value of cranial morphology in determining feeding ecology among the Macropodiformes and may be of use in inferring feeding ecology of less accessible species for conservation and management. - PublicationRelationship between foramen magnum position and locomotion in extant and extinct hominoids(Academic Press, 2017-12)
;Neaux, Dimitri ;Bienvenu, Thibaut ;Guy, Franck ;Daver, Guillaume; ; ;Rae, Todd C; Brunet, MichelFrom the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies. - PublicationThe mechanical properties of bettong and potoroo foods(CSIRO Publishing, 2024)
; ; ;Andrew, Damien ;Mathewson, Ian ;Weisbecker, VeraPotoroid marsupials (bettongs and potoroos of the family Potoroidae) are considered ecosystem engineers because of the roles they play in maintaining biodiversity. However, severe declines since European arrival have necessitated intense conservation efforts. Vital to these efforts is an understanding of the physical challenges that define their niches. The mechanical properties of their foods, such as toughness and stiffness, represent a physical interface with the environment that can contribute to quantitatively defining their niches. Here, we provide mechanical property data from wild bettong and potoroo foods, such as roots and tubers, fruit, fungi, invertebrates, seeds, and leaves. Toughness ranged from approximately 56.58 J/m2 (fungal sporocarp of Descolea sp.) to 2568.15 J/m2 (tubers of the blue yam, Brunoniella australis). Similarly, stiffness of the wild foods ranged from 1.15 MPa for Descolea sp. to 30.4 MPa for B. australis. However, the mechanical demands of accessing the kernels from within the shells (testae) of sandalwood and quandong (Santalum spp.) seeds far exceed measurements of any foods tested. We also tested some farmed foods, alongside inclusion of data from previous studies. Taken together, these data can also improve selection of comparable foods in designing diets for potoroids, and other species, in captivity.