Publication: Isolated singularities for weighted quasilinear elliptic equations
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | acc16143-76e3-4569-a2ed-927deb72d1a2 | |
cris.virtualsource.orcid | acc16143-76e3-4569-a2ed-927deb72d1a2 | |
dc.contributor.author | Cirstea, Florica C | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2011-05-19T10:11:00Z | |
dc.date.issued | 2010 | |
dc.description.abstract | We classify all the possible asymptotic behavior at the origin for positive solutions of quasilinear elliptic equations of the form div(∇|u|ᵖ⁻²∇u)=b(x)h(u) in Ω∖{0}, where 1∠p≤N and Ω is an open subset of ℝᴺ with 0∈Ω. Our main result provides a sharp extension of a well-known theorem of Friedman and Véron for h(u)=uq and b(x)≡1, and a recent result of the authors for p=2 and b(x)≡1. We assume that the function h is regularly varying at ∞ with index q (that is, limt→∞h(λt)/h(t)=λq for every λ>0) and the weight function b(x) behaves near the origin as a function b0(|x|) varying regularly at zero with index θ greater than −p. This condition includes b(x)=|x|θ and some of its perturbations, for instance, b(x)=|x|θ(−log|x|)ͫ for any m ∈ ℝ. Our approach makes use of the theory of regular variation and a new perturbation method for constructing sub- and super-solutions. | en |
dc.identifier.academiclevel | #PLACEHOLDER_PARENT_METADATA_VALUE# | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.citation | Journal of Functional Analysis, 259(1), p. 174-202 | en |
dc.identifier.doi | 10.1016/j.jfa.2010.03.015 | en |
dc.identifier.issn | 1096-0783 | en |
dc.identifier.issn | 0022-1236 | en |
dc.identifier.staff | #PLACEHOLDER_PARENT_METADATA_VALUE# | en |
dc.identifier.staff | une-id:ydu | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/7471 | |
dc.language | en | en |
dc.publisher | Elsevier Inc | en |
dc.relation.ispartof | Journal of Functional Analysis | en |
dc.subject.keywords | Partial Differential Equations | en |
dc.title | Isolated singularities for weighted quasilinear elliptic equations | en |
dc.type | Journal Article | en |
dspace.entity.type | Publication | |
local.contributor.firstname | Florica C | en |
local.contributor.firstname | Yihong | en |
local.contributor.lastname | Cirstea | en |
local.contributor.lastname | Du | en |
local.description.statisticsepubs | Visitors: 87<br />Views: 84<br />Downloads: 0 | en |
local.format.endpage | 202 | en |
local.format.startpage | 174 | en |
local.identifier.epublicationsrecord | une-20110309-160127 | en |
local.identifier.issue | 1 | en |
local.identifier.scopusid | 77951978430 | en |
local.identifier.unepublicationid | une:7639 | en |
local.identifier.volume | 259 | en |
local.identifier.wosid | 000277139400007 | en |
local.output.category | C1 | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.peerreviewed | Yes | en |
local.profile.email | #PLACEHOLDER_PARENT_METADATA_VALUE# | en |
local.profile.email | ydu@une.edu.au | en |
local.profile.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.school | Maths | en |
local.profile.school | School of Science and Technology | en |
local.publisher.place | United States of America | en |
local.record.institution | University of New England | en |
local.record.place | au | en |
local.search.author | Cirstea, Florica C | en |
local.search.author | Du, Yihong | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.title.maintitle | Isolated singularities for weighted quasilinear elliptic equations | en |
local.uneassociation | Unknown | en |
local.year.published | 2010 | en |