Options
Title
The Stefan problem for the Fisher-KPP equation with unbounded initial range
Author(s)
Publication Date
2021-04
Early Online Version
Abstract
<p>We consider the nonlinear Stefan problem</p> <table><tr><td>{</td><td><i>u<sub>t</sub>-dΔu = au − bu<sup>2</sup></i></td> <td> for <i>x Ω</i>(<i>t</i>),<i> t</i> > 0,</td></tr><tr><td> </td><td><i>u</i> = 0 and <i>u<sub>t</sub> = μ|∇<sub>x</sub>u</i>|<sup>2</sup></td><td>for <i>x ∂Ω</i>(<i>t</i>), <i>t</i> > 0,</td></tr><tr><td> </td><td><i>u</i>(0,<i>x</i>) = <i>u</i><sub>0</sub>(<i>x</i>)</td> <td> for <i>x</i> Ω<sub>0</sub>,</td></tr></table> <p>where Ω(0)=Ω0 is an unbounded Lipschitz domain in ℝ<sup><i>N</i></sup>, <i>u</i><sub>0</sub> > 0 in Ω<sub>0</sub> and <i>u</i><sub>0</sub> vanishes on ∂Ω<sub>0</sub>. When Ω<sub>0</sub> is bounded, the long-time behavior of this problem has been rather well-understood by Du et al. (J Differ Equ 250:4336-4366, 2011; J Differ Equ 253:996-1035, 2012; J Ellip Par Eqn 2:297-321, 2016; Arch Ration Mech Anal 212:957-1010, 2014). Here we reveal some interesting different behavior for certain unbounded Ω<sub>0</sub>. We also give a unified approach for a weak solution theory to this kind of free boundary problems with bounded or unbounded Ω<sub>0</sub>.
Publication Type
Journal Article
Source of Publication
Calculus of Variations and Partial Differential Equations, 60(2), p. 1-37
Publisher
Springer
Socio-Economic Objective (SEO) 2020
2021-04-05
Place of Publication
Germany
ISSN
1432-0835
0944-2669
Fields of Research (FoR) 2020
Socio-Economic Objective (SEO) 2020
Peer Reviewed
Yes
HERDC Category Description
Peer Reviewed
Yes
Permanent link to this record