Options
Title
Genetic correlations between meat quality traits and growth and carcass traits in Merino sheep
Author(s)
Mortimer, Suzanne I
Fogarty, Neal M
Jacob, Robin H
Hopkins, David L
Edwards, Janelle E Hocking
Ponnampalam, Eric N
Warner, Robyn D
Pearce, Kelly L
Pethick, David W
Publication Date
2018-09
Early Online Version
Abstract
Genetic correlations between 16 meat quality and nutritional value traits and live weight at various ages, live ultrasound fat and muscle depth, carcass measures, and carcass dissection traits were estimated for Merino sheep in the Information Nucleus (IN). Genetic correlations between live weight at various ages and the carcass traits are also reported. The IN comprised 8 genetically linked flocks managed across a range of Australian sheep environments. Meat quality traits included between 1,200 and 1,300 records for progeny from over 170 sires for intramuscular fat (IMF), lean meat yield (LMY), shear force (SF5), pH, meat color, and meat nutritional value traits including iron and zinc levels and long-chain omega-3 and omega-6 polyunsaturated fatty acid levels. The genetic correlations indicated that selection of Merino sheep to either reduce fat or increase muscle using ultrasound assessments will result in little change in IMF and SF5. Myoglobin levels would tend to be reduced following selection for reduced ultrasound fat depth (0.35 ± 0.21, 0.43 ± 0.14), whereas increases in myoglobin levels would occur due to selection for increased ultrasound muscle depth (0.25 ± 0.24, 0.38 ± 0.15). Selection for increased live weight will result in favorable correlated responses in hot carcass weight (0.76 to 0.97), dressing percentage (0.13 to 0.47), and carcass muscle (0.37 to 0.95), but unfavorable responses of increases in carcass fatness (0.13 to 0.65) and possible small reductions in muscle oxidative activity (−0.13 ± 0.14 to −0.73 ± 0.33) and iron content (−0.14 ± 0.15 to −0.38 ± 0.16), and a possible deterioration of shear force from selection at later ages (0.15 ± 0.26, 0.27 ± 0.24). Negligible changes are generally expected for LMY and meat color traits following selection for increased live weight (most genetic correlations less than 0.20 in size). Selection for increased LMY would tend to result in unfavorable changes in several aspects of meat quality, including reduced IMF (−0.27 ± 0.18), meat tenderness (0.53 ± 0.26), and meat redness (−0.69 ± 0.40), as well as reduced iron levels (−0.25 ± 0.22). These genetic correlations are a first step in assisting the development of breeding values for new traits to be incorporated into genetic evaluation programs to improve meat production from Merino sheep and other dual-purpose sheep breeds.
Publication Type
Journal Article
Source of Publication
Journal of Animal Science, 96(9), p. 3582-3598
Publisher
American Society of Animal Science
Socio-Economic Objective (SEO) 2020
2018-06-08
Place of Publication
United States of America
ISSN
1525-3163
0021-8812
Fields of Research (FoR) 2020
Socio-Economic Objective (SEO) 2020
Peer Reviewed
Yes
HERDC Category Description
Peer Reviewed
Yes
Permanent link to this record