Options
Milne, Heath
- PublicationSatellite and telecommunication alert system for foot-hold trapping(CSIRO Publishing, 2021)
; ; ; ;Croft, Simon ;Lawson, GeoffContext. Improving the welfare outcomes for captured animals is critically important and should underpin 'best-practice' trapping. Most Australian States and Territories have regulations and guidelines that form a legal framework for the maximum number of hours an animal can be restrained in a trap. Because servicing all traps within preferred time frames (less than 24 h) can be logistically difficult or is considered undesirable for efficacy reasons, some jurisdictions have adopted relatively long trap-checking intervals (up to 72 h).
Aims. We developed and tested the signal transmission and alert efficacy of a foot hold-trap alert system, based on Celium technology, so as to advise trappers of the activation of individual foot-hold traps, even in remote locations.
Methods. We refined the Celium trap-alert system and designed a below-ground wireless node that transmits a message via satellite or by using the cellular system when a foot-hold trap is sprung. We tested signal transmission and alert efficacy in three locations, with a focus in Australia.
Key results. Transmission of signals from nodes to hubs and to a smart-phone application were used to resolve interference problems and to identify signal limitations and strengths. During the capture of 34 dingoes, 91% of captures resulted in an alert being received. False negatives were attributed to technical issues with nearby transmitters swamping signals, and software problems that have since been resolved. In 40 captures of dogs and foxes, only one trap-alert transmitter (mole) was uncovered by a target animal and no devices were damaged by animals post-capture.
Conclusions. This cable-less trap-alert system successfully uses both cellular and satellite networks to transmit messages from desert and coastal locations to trappers, in Australia. We confirmed that this trap-alert system is not detected by target predators in the areas tested and can be effectively used to alert trappers when traps have been sprung.
Implications. This trap-alert system provides a tool to improve welfare outcomes for trapped target and non-target animals through Australia and New Zealand and wherever trapping occurs. It, furthermore, provides a solution to checking traps daily when the distance to and between traps cannot be covered within an appropriate time frame. Although trap alerts can never replace the value of daily trap checking by the trapper, they provide a solution to a management problem, namely, one of accessibility to sites.
- PublicationCamera Trapping Technology and Related Advances: into the New Millennium(Royal Zoological Society of New South Wales, 2020-05-01)
; ; ; ; ; ; ; ;Mather-Zardain, Atalya T; ; ; ; ; ; ; ; ; Camera trapping has advanced significantly in Australia over the last two decades. These devices have become more versatile and the associated computer technology has also progressed dramatically since 2011. In the USA, the hunting industry drives most changes to camera traps; however the scientific fraternity has been instrumental in incorporating computational engineering, statistics and technology into camera trap use for wildlife research. New survey methods, analytical tools (including software for image processing and storage) and complex algorithms to analyse images have been developed. For example, pattern and texture analysis and species and individual facial recognition are now possible. In the next few decades, as technology evolves and ecological and computational sciences intertwine, new tools and devices will emerge into the market. Here we outline several projects that are underway to incorporate camera traps and associated technologies into existing and new tools for wildlife management. These also have significant implications for broader wildlife management and research. - PublicationEfficacy of lethal-trap devices to improve the welfare of trapped wild dogs(CSIRO Publishing, 2019)
; ;Brown, Stuart C ;Wishart, Jason; ;Aylett, Paul ;Humphrys, Simon; Context. Wildlife and pest managers and stakeholders should constantly aim to improve animal-welfare outcomes when foot-hold trapping pest animals. To minimise stress and trauma to trapped animals, traps should be checked at least once every 24 h, normally as soon after sunrise as possible. If distance, time, environmental or geographical constraints prevent this, toxins such as strychnine can be fitted to trap jaws to induce euthanasia. However, strychnine is considered to have undesirable animal-welfare outcomes because animals are conscious while clinical signs of intoxication are present. A toxin considered more humane, para-aminopropiophenone (PAPP), is available to induce euthanasia in trapped animals but is untested for presentation and efficacy.
Aim. We tested the efficacy of two types of lethal trap device (LTD's), each using a paste formulation of PAPP as the active toxin to replace the use of strychnine on foot-hold jaw traps.
Methods. Elastomer LTDs and PAPP-cloths were fitted to jaw traps set to capture wild dogs (Canis familiaris). Camera-trap data was used to record animal behaviours after capture and to determine the efficacy of both modalities.
Key results. Every trapped wild dog (n = 117) gnawed at the elastomer LTD's or PAPP-cloth attached to the trap jaws that restrained them; one dog failed to liberate the toxin. From the dogs caught in the main trial (n = 56), a mortality rate of 84% and 87% was reported respectively. The mean time from trap-to-death for elastomer LTDs was 64 min and 68 min for PAPP-cloths.
Conclusions. Elastomer LTDs and PAPP cloths combined caused the mortality of 85% of captured dogs. This efficacy could be improved by adopting the recommendations discussed in the present study for deploying PAPP-based LTDs during trap deployment.
Implications. PAPP-based LTDs offer an alternative option to the use of strychnine and improve the welfare outcomes for trapped predators, especially where traps are not checked within the recommended 24-h period. - PublicationThe dingo (Canis familiaris) as a secondary disperser of mycorrhizal fungal spores(CSIRO Publishing, 2023)
; ; ; ; ; ;Elliott, Kelsey; ; Context. Many mycorrhizal fungi are vital to nutrient acquisition in plant communities, and some taxa are reliant on animal-mediated dispersal. The majority of animals that disperse spores are relatively small and have short-distance movement patterns, but carnivores – and especially apex predators – eat many of these small mycophagists and then move greater distances. No studies to date have assessed the ecosystem services carnivores provide through long-distance spore dispersal. Aims. In this study, we aimed to investigate whether Australia's free-ranging dogs (Canis familiaris), including dingoes, act as long-distance spore dispersers by predating smaller mycophagous animals and then secondarily dispersing the fungi consumed by these prey species. Methods. To answerthis question, we collected dingo scats along 40 km of transects in eastern Australia and analysed the scats to determine the presence of fungal spores and prey animals. Using telemetry and passage rate data, we then developed a movement model to predict the spore dispersal potential of dingoes. Key results. We found 16 species of mammalian prey to be eaten by dingoes, and those dingo scats contained spores of 14 genera of mycorrhizal fungi. These fungi were more likely to appear in the scats of dingoes if primary mycophagist prey mammals had been consumed. Our model predicted dingo median spore dispersal distance to be 2050 m and maximum dispersal potential to be 10 700 m. Conclusions. Our study indicates that dingoes are providing a previously overlooked ecosystem service through the long-distance dispersal of mycorrhizal fungi. Many of the fungi found in this study form hypogeous (underground) fruiting bodies that are unable to independently spread spores via wind. Because dingoes move over larger areas than their prey, they are especially important to these ecosystem functions. Implications. Our novel approach to studying an overlooked aspect of predator ecology is applicable in most terrestrial ecosystems. Similar modelling approaches could also be employed to understand the dispersal potential of both primary and secondary spore dispersers globally. Because this study highlights an unrecognised ecosystem service provided by dingoes, we hope that it will stimulate research to develop a more comprehensive understanding of other apex predators' ecosystem functions.
- PublicationActivity of dingoes (Canis familiaris) and their use of anthropogenic resources in the Strzelecki Desert, South Australia(CSIRO Publishing, 2024-04-04)
; ; ; ; ; Context. Managing human–wildlife conflict where anthropogenic resources are provided is difficult. Providing food, water and shelter can result in over-abundant dingo populations, especially in Australian desert mine sites where managing dingoes, wildlife and humans around waste-management facilities and camps is problematic. Aims. To measure and characterise the spatial activities of a population of arid-zone dingoes in relation to resources provided by a Cooper Basin (Strzelecki Desert, South Australia mining operation). The results were used to facilitate effective dingo management. Methods. Free-roaming dingoes were captured, their morphometrics and ectoparasite presence recorded, and they were fitted with Iridium (GPS) radio collars. These were used to collect high-fidelity data about individual dingo activity and movements in relation to minesite infrastructure and the Cooper Basin ecosystem. Key results. A high density of dingoes (181 trapped in 2 km2 per 4 years) was associated with the mining operation. Home range/activity area sizes and usage of the anthropogenic landscape showed the following three categories of dingo: desert, peripatetic and tip dingoes. Dingoes reliant on food provisioning at the waste-management facility (WMF) displayed activity areas with a strong focus on the WMF (tip dingoes). Temporal activity patterns of another group of dingoes (peripatetic dingoes) were associated with regular waste-dumping times and normal nocturnal activity away from the WMF. Of the 27 dingoes collared, 30% (i.e. desert dingoes) were not dependent on the WMF, spending more time and a greater area of use in the desert dune system than in the mine-site area. Conclusions. On the basis of the capture of 181 dingoes over 4 years and home-range analysis, it is likely that anthropogenic resource provisioning has caused an overabundance of dingoes in the Cooper Basin mine site. However, some of the dingo population remains reliant on native wildlife and resources in the surrounding desert. Managing food waste and excluding dingoes from food, water and shelter will result in a change in the prevalence of dingoes in the mine site, and subsequent reduction in the risk of disease transmission, native wildlife impacts, human conflicts and social pressures on dingoes, influencing them to revert to domestic-dog behaviours. Implications. Waste-management facilities where food is dumped provide resources that lead to a change in wild-dingo behaviour, on the basis of their acceptance of human-provided resources, and high abundance. Managing access to anthropogenic resources will reduce the population as well as unwanted or aggressive encounters with humans. Dingoes reliant on food scraps will be encouraged to adjust their activity areas to desert habitat, thereby providing natural hunting opportunities and reduced contact rates with conspecifics, thus potentially reducing pathogen transmission.