Options
Title
Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and -2 Data
Fields of Research (FoR) 2008:
Author(s)
Publication Date
2020
Socio-Economic Objective (SEO) 2008
Early Online Version
Open Access
Yes
Abstract
Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km² area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.
Publication Type
Journal Article
Source of Publication
Remote Sensing, 12(1), p. 1-26
Publisher
MDPI AG
Socio-Economic Objective (SEO) 2020
2019-12-26
Place of Publication
Switzerland
ISSN
2072-4292
File(s) openpublished/LandBrinkhoffRobson2020JournalArticle.pdf (26.11 MB)
Published version
Fields of Research (FoR) 2020
Socio-Economic Objective (SEO) 2020
Peer Reviewed
Yes
HERDC Category Description
Peer Reviewed
Yes
Permanent link to this record